Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-16

Anchoring of metal-organic frameworks, MOFs, to surfaces

Objective

Control of growth and properties of structures on a length scale down to molecular dimensions is one of the major challenges in nanotechnology. The project tackles this challenge by merging surface science with coordination chemistry. Metal-organic frameworks (MOFs) which are coordination polymers consisting of organic ligands linked together by metal ions, are most promising systems due to the virtually unlimited flexibility in their design.

Besides appealing properties of the MOF framework itself, which makes MOFs most interesting as electrochromic, magnetic, and storage materials, it is the fact that the framework can be loaded with other molecular compounds by employing guest-host chemistry. This possibility creates a tremendous technological potential in a variety of different fields, in particular with respect to catalysis and hydrogen storage. Further applications, e.g. in sensors and in electronics where the length scale below 20 nm requires solutions beyond established concepts, emerge when MOFs are attached to surfaces.

Contrasting existing strategies, which are based on the anchoring of bulk-synthesised MOFs on a surface, the present project takes a qualitatively new approach by using surfaces to initiate and control the growth of MOFs. Combining a bottom-up (building of the MOFs from molecular subunits) with a top-down (different types of lithographies) approach, control of MOF patterns in three dimensions is envisaged. Involving coordination and synthetic organic chemistry, surface science, and modelling a comprehensive approach is adopted.

Ranging from fundamental aspects of nucleation and growth of MOFs to application related issues of their host-guest chemistry different schemes will be explored by experiments on different types of MOFs under conditions, which range from ultrahigh vacuum to electrochemical environment.

Keywords

Call for proposal

FP6-2004-NMP-TI-4
See other projects for this call

Coordinator

RUHR-UNIVERSITÄT BOCHUM
EU contribution
No data
Total cost
No data

Participants (9)