Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenido archivado el 2024-06-18

Quantum Computer Lab

Objetivo

The world of atoms is governed by the rules of quantum mechanics. Over the past century, quantum-mechanical phenomena such as superposition and entanglement have been observed and studied with great precision. Today, we are entering a new era in which we can hope to explore quantum mechanics in larger objects. The science of quantum mechanics in more complex objects is barely known and as a result quantum mechanics is rarely explicitly used in technology. Theoretically, superposition and entanglement could be exploited as a new resource in a wide variety of future applications. We focus on information science and investigate the use of quantum mechanics in computing, i.e. a quantum computer (QC). If information is encoded in quantum superpositions and processed by exploiting entanglement, a QC can solve computational problems that are beyond the reach of conventional computers. Building a QC is, however, an enormous scientific challenge because the fragile quantum bits need to be protected from and corrected for even the smallest disturbances by the environment. Meeting this challenge requires a synergetic effort combining the best of quantum theory, electrical engineering, materials science, applied physics and computer science. This proposal aims to achieve a robust, exemplary QC. We propose a circuit containing processor qubits (two types: superconducting transmon qubits and spin qubits in silicon quantum dots), memory qubits (two types: topological qubits with nanowires and donor qubits), and a quantum databus (superconducting striplines). Our goal is to demonstrate a 13-qubit circuit that incorporates fault-tolerance through implementation of a surface code. We will demonstrate back-and-forth quantum state transfer between processor and memory qubits. Our team brings together the required expertise into a single “QC-lab” enabling us to bring our understanding of quantum mechanics to the next level and push QC to the tipping point from science to engineering.

Convocatoria de propuestas

ERC-2012-SyG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

ERC-SyG - Synergy grant

Investigador principal de referencia

Lieven Mark Koenraad Vandersypen Prof.

Institución de acogida

TECHNISCHE UNIVERSITEIT DELFT
Aportación de la UE
€ 13 330 000,00
Dirección
STEVINWEG 1
2628 CN Delft
Países Bajos

Ver en el mapa

Tipo de actividad
Higher or Secondary Education Establishments
Investigador principal
Carlo Willem Joannes Beenakker (Prof.)
Contacto administrativo
Jose Van Vugt (Ms.)
Enlaces
Coste total
Sin datos

Beneficiarios (2)