Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Inhalt archiviert am 2024-06-18

Novel Nano-enabled Energy Efficient and Safe HVAC ducts and systems contributing to an healthier indoor environment

Ziel

The NANO-HVAC project concept aims at developing an innovative approach for ducts insulation while introducing new cleaning and maintenance technologies, all enabled by cost-effective application of nanotechnology. The main concepts are:
1. Safe, high insulating HVAC-ducts enabling minimization of heat/cool losses: cost-effective, safe and extremely thin insulating duct layers that can be applied both to circular ducts (wet-spray solutions) and to square ducts (pre-cast panel). Insulation will be obtained using sprayable aeroclay-based insulating foams that can be automatically applied during manufacturing of ducts, avoiding manual operation needed for conventional materials. Such technologies, coupled with advanced maintenance systems (objective 2) will guarantee a 50% energy saving compared with conventional ducts.
2. Cost-effective pathogen and allergenic removal during operation and maintenance to reduce microbial growth: (a) development of anti-microbial, sprayable and self-adhesive photocatalytic coating, based on titanium oxide nanoparticles, for HVAC filters. (b) Development of an injectable liquid polymer matrix (epoxy resins with polyamine derived crosslinking catalyst) containing antimicrobial nanoparticles (silver oxides) for air ducts in situ maintenance activities. The liquid polymer will polymerize in situ creating a coating of thickness < 20µm which will cover the surface trapping dirt, debris and microorganisms, thus “regenerating” the duct inner layer. The procedure may be repeated over time without affecting HVAC energy performance.
Scientific and technological objectives within NANO-HVAC project can be organised in four areas: (1) high efficient and cost-effective insulation solutions for HVAC ducts (2) inhibition and removal of pathogens and allergenics (3) integration and lab scale characterization, (4) demonstration and validation.
The project duration is estimated to be 36 months, with tasks organized in 9 Work Packages.

Aufforderung zur Vorschlagseinreichung

FP7-2012-NMP-ENV-ENERGY-ICT-EeB
Andere Projekte für diesen Aufruf anzeigen

Koordinator

VENTO NV
EU-Beitrag
€ 355 650,00
Adresse
BEDRIJVENPARK COUPURE 5
9700 OUDENAARDE
Belgien

Auf der Karte ansehen

Aktivitätstyp
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Kontakt Verwaltung
Bart Modde (Mr.)
Links
Gesamtkosten
Keine Daten

Beteiligte (10)