Objective
Good fertility is essential for the sustainability of livestock production. Of all livestock sectors, fertility of dairy cattle is raising the greatest cause for concern. Cow fertility has declined, particularly in Holstein cattle, from 80% pregnancy to first service 20 years ago to less than 40% today. Poor fertility is one of the main reasons for early culling, such that modern dairy cows complete fewer than 3 lactations, on average. The FECUND project will address the metabolic and genetic causes of low reproductive success of dairy cows in an interdisciplinary approach that will integrate in vivo and in vitro studies, biology, physiology, -omics technologies and bioinformatics. FECUND will focus on the early phases of reproduction from oocyte development to implantation of the conceptus. Starting from biological materials produced from high and low genetic merit cattle and from cows under energy stress of early lactation vs dry cows and heifers, FECUND will study, independently, the effects of genetics and metabolic stress on reproductive physiology to identify factors and early markers associated with high and low developmental potential, and with positive mother-conceptus interaction during the early stages of reproduction. These data will be mined to reveal physiological pathways and key candidate genes controlling variations of fertility. The biological knowledge created on early reproductive events in vivo will be validated in vitro, and extended to create further knowledge on the effects of the local environment on oocyte and embryo programming at the epigenetic level. Validated information will be used to improve herd management, gene assisted and genomic selection and assisted reproductive technologies, from in vitro ooctye maturation to optimised embryo culture. Information on biomarkers, indicator traits and improvements in assisted reproduction will be translated to applications that can be immediately implemented by SMEs.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
Topic(s)
Call for proposal
FP7-KBBE-2012-6-singlestage
See other projects for this call
Coordinator
26900 Lodi
Italy