Ziel
One of the strategic objectives of the industrial initiative of the SET Plan on wind energy is to reduce cost of energy by improving reliability of wind turbines and their components and optimizing operation and maintenance (O&M) strategies. Increasing reliability and optimizing O&M have a direct impact on the availability of wind turbines and thus reduce cost and increase energy output. This strategy considerably contributes to making wind energy fully competitive. This is particularly evident in the offshore sector, where O&M represents a high percentage of total costs.
MARE-WINT will contribute to the achievement of this goal by proving training in the context of doctoral programmes for 14 researchers in multi-disciplinary area of future generation of Offshore Wind Turbines (OWT) engineering focusing on issues having a major impact on the mechanical loading of OWT and which are still not sufficiently understood.
OWT is a complex energy conversion fluid flow machine which entails coupled hydro-aero-mechanical issues. To design, built and operate a reliable OWT knowledge from disciplines like mechanical engineering, material science, metrology, fluid mechanics, condition monitoring, and computer simulation need to be combined. It is the ambition of MARE-WINT network to bring together specific partners capabilities and know-how to realize tailored training trajectories, focusing on increased reliability OWT design.
Balanced industry-academia network consortium includes 6 Universities, 7 Research Institutes, 4 SME’s and 7 Large Industry Partners. The participation of 13 private sector Partners active in off-shore developments is essential to achieving the full impact of the project. Industrial partners are involved in hosting, training and defining the training needs of the researchers. Strong involvement of the industry will give PhD students the widest possible employment prospects. There are 4 “Industrial PhD” programmes identified within MARE-WINT
Wissenschaftliches Gebiet
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energywind power
- engineering and technologymechanical engineering
- social scienceseconomics and businessbusiness and managementemployment
- engineering and technologyenvironmental engineeringenergy and fuelsenergy conversion
- natural sciencesmathematicsapplied mathematicsmathematical model
Aufforderung zur Vorschlagseinreichung
FP7-PEOPLE-2012-ITN
Andere Projekte für diesen Aufruf anzeigen
Finanzierungsplan
MC-ITN - Networks for Initial Training (ITN)Koordinator
80-231 Gdansk
Polen