Objectif
"This project aims to develop a new generation of e-voting called the “self-enforcing e-voting system”. The new system does not depend on any trusted authorities, which is different from all currently existing or proposed e-voting schemes. This has several compelling advantages. First, voting security will be significantly improved. Second, the democratic process will be enforced as a whole. Third, the election management will be dramatically simplified. Fourth, the tallying process will become much faster.
The idea of a “self-enforcing” e-voting system has so far received little attention. Although several researchers have attempted to build such a system in the past decade, none were successful due to inefficiencies in computation, bandwidth and the number of rounds. My preliminary investigation indicates that a ""self-enforcing e-voting system"" is not only practically feasible, but has the potential to be the future of e-voting technology. I have identify several major research problems in the field, which need to be addressed urgently before a self-enforcing e-voting system can finally become viable for practical use. The problems span three disciplines: security, dependability and usability.
My main hypothesis is: “a secure, dependable and usable self-enforcing e-voting system will trigger a paradigm shift in voting technology”. I believe e-voting has great potential that has yet to be exploited, and this project is to develop that potential to the full. The work program involves six work packages: 1) to develop supportive security primitives to lay foundation for future e-voting; 2) to research the impact of “self-enforcing” requirement on dependability; 3) to develop assistive technologies to improve the usability in voting; 4) to design system architectures suitable for different election scenarios; 5) to build open source prototypes; 6) to conduct real-world trial elections and evaluate the full technical, social, economic and political impacts."
Champ scientifique
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
Appel à propositions
ERC-2012-StG_20111012
Voir d’autres projets de cet appel
Régime de financement
ERC-SG - ERC Starting GrantInstitution d’accueil
NE1 7RU Newcastle Upon Tyne
Royaume-Uni