Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Inhalt archiviert am 2024-06-18

High-Dimensional Sparse Optimal Control

Ziel

We are addressing the analysis and numerical methods for the tractable simulation and the optimal control of dynamical systems which are modeling the behavior of a large number N of complex interacting agents described by a large amount of parameters (high-dimension). We are facing fundamental challenges:
- Random projections and recovery for high-dimensional dynamical systems: we shall explore how concepts of data compression via Johnson-Lindenstrauss random embeddings onto lower-dimensional spaces can be applied for tractable simulation of complex dynamical interactions. As a fundamental subtask for the recovery of high-dimensional trajectories from low-dimensional simulated ones, we will address the efficient recovery of point clouds defined on embedded manifolds from random projections.
-Mean field equations: for the limit of the number N of agents to infinity, we shall further explore how the concepts of compression can be generalized to work for associated mean field equations.
- Approximating functions in high-dimension: differently from purely physical problems, in the real life the ”social forces” which are ruling the dynamics are actually not known. Hence we will address the problem of automatic learning from collected data the fundamental functions governing the dynamics.
- Homogenization of multibody systems: while the emphasis of our modelling is on “social” dynamics, we will also investigate methods to recast multibody systems into our high-dimensional framework in order to achieve nonstandard homogenization by random projections.
- Sparse optimal control in high-dimension and mean field optimal control: while self-organization of such dynamical systems has been so far a mainstream, we will focus on their sparse optimal control in high-dimension. We will investigate L1-minimization to design sparse optimal controls. We will learn high-dimensional (sparse) controls by random projections to lower dimension spaces and their mean field limit.

Aufforderung zur Vorschlagseinreichung

ERC-2012-StG_20111012
Andere Projekte für diesen Aufruf anzeigen

Gastgebende Einrichtung

TECHNISCHE UNIVERSITAET MUENCHEN
EU-Beitrag
€ 1 123 000,00
Adresse
Arcisstrasse 21
80333 Muenchen
Deutschland

Auf der Karte ansehen

Region
Bayern Oberbayern München, Kreisfreie Stadt
Aktivitätstyp
Higher or Secondary Education Establishments
Hauptforscher
Massimo Fornasier (Prof.)
Kontakt Verwaltung
Ulrike Ronchetti (Ms.)
Links
Gesamtkosten
Keine Daten

Begünstigte (1)