Objective
The aim of PCDIAB is to build and evaluate a bihormonal (insulin and glucagon) artificial pancreas (AP) with automated closed loop glycaemic control for insulin treated patients with diabetes. This will be a breakthrough in diabetes management. We will miniaturize our current prototype consisting of well-established continuous glucose monitors, an insulin pump and a glucagonpump. The housing will be redesigned with dedicated miniature motors and the software will be embedded. The algorithm will be improved and a continuous glucose sensor (CGM) per-formance alert will be developed. In parallel, glucagon pharmacology will be investigated and a stable liquid glu-cagon analogue will be developed. Furthermore, administration of insulin and glucagon together with continuous glucose monitoring at the same subcutaneous site will be investigated, to enable even further miniaturization in the future.
Deliverables include description of system integration of the bihormonal AP system and of an online detection of continuous glucose monitor performance. In a multinational controlled trial the bihormonal AP will be compared with standard intensive insulin therapy in daily life.
Impact of the project includes simplified diabetes care, improved quality of life for patients with diabetes, dimin-ished occurrence of diabetes related complications and diminished health costs in the long run. Also, the project will strengthen competitiveness of European industry across a complete value chain involving large, mid-sized and small companies, enabling Europe to lead progress in AP systems. Finally, the project will put European research and clinical organizations in leading positions with an increased number of high-skilled jobs in the medical device industry.
Dissemination and exploitation comprises a website, a conference, patents and scientific publications. The bihormonal closed loop system and the glucagon analogue can be developed into a product and brought to the market.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
Call for proposal
FP7-HEALTH-2012-INNOVATION-1
See other projects for this call
Funding Scheme
CP-FP - Small or medium-scale focused research projectCoordinator
1105AZ Amsterdam
Netherlands