Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenido archivado el 2024-06-18

Deterministic coupling between SITE-controlled, dilute nitride-based LighT Emitters and tailor-made photonic-crystal structures

Objetivo

The establishment of a simple, reliable method for the deterministic coupling of nm-sized light emitters with photonic crystal (PhC) cavities is expected to propel the field of nanophotonics into a new era. Indeed, the possibility to place single quantum objects at arbitrary points of a PhC structure would allow for the realization of complex photonic circuits, integrating single- and entangled-photon sources as well as PhC routers, switches, and delay lines. The SITELiTE project will position itself at the forefront of this forthcoming revolution, through the exploitation of a novel method for the fabrication of site-controlled nano-emitters (quantum dots, but also individual impurity complexes) by spatially-selective hydrogenation of dilute-nitride materials, recently demonstrated by the Host Institution [the G29 laboratory of Sapienza University of Rome; see, e.g. Adv. Mater. 23, 2706 (2011)].
The PhC cavities employed by the present project will be designed with an innovative semi-analytic method, recently introduced by the fellow, Dr. M. Felici [Phys. Rev. B 82, 115118 (2010)]. Through the definition of a direct relationship between the target electromagnetic field distribution and the dielectric constant of the cavity supporting it, this method eliminates the need for the cumbersome, computationally demanding trial-and-error procedures that currently hinder further developments in the field of PhC cavity design. Initially, this approach will be applied to cavities supporting modes with Gaussian envelope function and ultra-low cavity losses. Then, the project will focus on the engineering of PhC structures with more complex mode distributions, including systems of coupled cavities and PhC cavities with disorder-insensitive properties. The designed PhC structures, integrated with the light emitters fabricated by spatially-selective hydrogenation, will be realized by electron-beam lithography, and characterized with advanced optical spectroscopy techniques.

Ámbito científico

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.

Convocatoria de propuestas

FP7-PEOPLE-2011-IEF
Consulte otros proyectos de esta convocatoria

Coordinador

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Aportación de la UE
€ 193 726,80
Dirección
Piazzale Aldo Moro 5
00185 Roma
Italia

Ver en el mapa

Región
Centro (IT) Lazio Roma
Tipo de actividad
Higher or Secondary Education Establishments
Contacto administrativo
Antonio Polimeni (Prof.)
Enlaces
Coste total
Sin datos