Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenu archivé le 2024-06-18

Memory-enabled Optical Quantum Simulators

Objectif

Scientists have recently begun to explore the quantum nature of some marvelous phenomena such as superconductivity and photosynthesis. A clearer understanding could inspire a technological revolution, with the potential for a huge positive impact on the lives of human beings. Unfortunately, complex quantum systems with many-body interactions are hard to investigate theoretically due to their computational complexity. A promising way forward is to assemble and control real quantum systems to predict the behaviour of other quantum systems i.e. quantum simulation. In this document, I present a research proposal in the field of experimental quantum simulation, to be carried out in room-temperature atomic vapour at the University of Oxford. The central objective is to construct and implement the first memory-enabled optical quantum simulator, building on the world-leading broadband memory expertise in Oxford. In this scheme, stationary atomic excitations act as physical sites and flying photons mediate site-to-site interactions. This will be divided into three sub objectives: (1) building a broadband quantum memory and observing interference between flying photons and stationary atomic excitations; (2) simulating photosynthetic complex in a simplified model by means of an all-optical quantum network; (3) realizing a dynamically programmable memory-enabled optical quantum simulator. These all represent important advances in the nascent, multi-disciplinary field of quantum simulation. Through the two main experiments I performed at Jian-Wei Pan's group in China– long-distance free-space teleportation and quantum memory for down-converted entanglement – I have garnered expertise in large-scale quantum networks and quantum light-matter interfaces. I am therefore in a unique position to develop the technology at Oxford in order to achieve the aforementioned goals and turn quantum simulation into a mature and scalable technology for tackling intractable computational problems.

Appel à propositions

FP7-PEOPLE-2011-IIF
Voir d’autres projets de cet appel

Coordinateur

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Contribution de l’UE
€ 209 033,40
Adresse
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Royaume-Uni

Voir sur la carte

Type d’activité
Higher or Secondary Education Establishments
Contact administratif
Gill Wells (Mr.)
Liens
Coût total
Aucune donnée