Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenu archivé le 2024-06-18

Cost-Effective Solar AiR conditioning

Objectif

"Summer electricity use is growing year upon year, mainly due to air conditioning (AC) demand. Electricity grids are increasingly experiencing problems during the hottest summer days, to deal with the increasing demand of electricity from air conditioning systems.
Absorption cooling can be a solution to this growing problem, as it can supply cooling from a heating source, with only a very small electricity input (negligible) in comparison with traditional AC systems. Due to the use of renewable energies such as solar thermal or other residual/waste energy as heat source, the primary energy consumption is much lower than with conventional chillers.
However, solar cooling technology has a lot of barriers that delay the penetration of absorption machines in the market. The most important is the high costs of absorption chillers, as well as lack of standardization, market familiarity and compatibility with building design methodologies. The fact that all absorption machines based on LiBr technology currently in the market need a cooling tower is also a barrier for absorption chillers market acceptance.
The objective of the CESAR project is to develop a small scale, low cost absorption cooling unit, with efficient ambient air heat dissipation and which can use renewable heat sources and therefore have a minimum electricity use.
This goal will be achieved by:
- Use of new working fluids and fabrication materials never used in commercial absorption chillers, more efficient and cost-effective than commonly used alternatives
- Development of efficient, compact, cost-effective and simplified heat exchangers
- Development of control systems for efficient operation of the absorption machine
- Development of a friendly-use design tool for installers and planners in order to design and dimension solar cooling installations with the new absorption machine in an easy way"

Appel à propositions

FP7-SME-2011
Voir d’autres projets de cet appel

Régime de financement

BSG-SME - Research for SMEs

Coordinateur

FUNDACION TECNALIA RESEARCH & INNOVATION
Contribution de l’UE
€ 1 600,00
Adresse
PARQUE CIENTIFICO Y TECNOLOGICO DE GIPUZKOA, PASEO MIKELETEGI 2
20009 DONOSTIA-SAN SEBASTIAN (GIPUZKOA)
Espagne

Voir sur la carte

Région
Noreste País Vasco Gipuzkoa
Type d’activité
Research Organisations
Contact administratif
Epelde Maider (Ms.)
Liens
Coût total
Aucune donnée

Participants (6)