Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenu archivé le 2024-06-18

Forward Acquisition of Soil and Terrain for Exploration Rover

Objectif

The goal of the FASTER project is to address three key technology developments for planetary exploration: forward looking surface properties characterisation, innovative locomotion system for a scout type rover, and collaborative operation of a mother/scout pair. 1.) The project will develop methods and instrumentation to characterise the properties of planetary surfaces in which robotic rover vehicles operate to be able to anticipate hazards in advance of locomotion and navigation over that surface. By assessing the soil trafficability for a rover, decisions affecting rover safety (avoiding becoming stuck) can be reliably taken and hazards avoided. 2.) The project will look at what innovation can be applied to ensure that the scout rover is able to operate with minimal risk of encountering hazardous situations from which it must recover. 3.) FASTER will explore the feasibility and performance of a mother/scout rover pair combination and develop methods to achieve successful collaborative and autonomous robot operation. The forward looking scout rover will be equipped with a special combination of sensor technologies to acquire soil and terrain information. This information will allow a risk model to be constructed that indicates the potential hazards that the terrain represents to the following mother rover. Reducing the locomotion and traverse risks using the proposed advances in autonomous mother / scout collaboration will allow mission operators to explore planetary surfaces with increased safety. It will make possible new levels of autonomous operations by significantly reducing the greatest uncertainty factor – namely properties of the surface material on which the rover must operate. This will lead to increased operational efficiency and, when coupled with the increased richness of the surface properties data, will lead to much higher scientific returns per capital investment for each mission.

Appel à propositions

FP7-SPACE-2011-1
Voir d’autres projets de cet appel

Coordinateur

DEUTSCHES FORSCHUNGSZENTRUM FUR KUNSTLICHE INTELLIGENZ GMBH
Contribution de l’UE
€ 531 000,00
Adresse
TRIPPSTADTER STRASSE 122
67663 Kaiserslautern
Allemagne

Voir sur la carte

Région
Rheinland-Pfalz Rheinhessen-Pfalz Kaiserslautern, Kreisfreie Stadt
Type d’activité
Research Organisations
Contact administratif
Thomas Vögele (Dr.)
Liens
Coût total
Aucune donnée

Participants (5)