Objective
The NANOPUR-project aims at leveraging on promising bottom-up technologies to develop intensified water treatment concepts based on nano-structured and nano-functionalized membranes as well as nanofilm deposition for micropollutants and virus removal.
Major research needs targeted include the preparation of membranes with selective properties at the nanoscale able to maintain high permeability with relatively low driving force. The ultimate “challenge” exists in the creation of artificial membranes able to perform separations with the selectivity of biological membranes while having mechanical strength and productivity of state-of-the-art artificial membranes. The project will advance the knowledge in this area by developing scalable approaches to prepare nano-structured membranes characterized by a selectivity towards pathogens of up to 99.99999 % and towards micropollutants up to 99 %, while retaining a permeability higher than current ultrafiltration membranes in addition to functional stability equal to existing commercial membranes. The envisaged research activities will involve the preparation of polymeric nano-structured membranes characterized by well-controlled architectures and functions for supramolecular recognition for removal of viruses, hormone disruptors, endotoxins and antibiotics from water. For the generation of affinity and catalytic sites on membranes, molecular imprinted polymers and atmospheric pressure plasma treatment will be explored. The technological developments will be carried out along two different technology paths each targeting at a different aspect of the water treatment process. A first research path will focus on the reduction of membrane fouling thereby enhancing the flux while the second research path targets the removal of micro-pollutants and detoxification. Both paths will converge in order to combine the two critical aspects of water purification that are investigated in the proposed work in one single membrane process
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologymechanical engineeringmanufacturing engineering
- natural sciencesbiological sciencesmicrobiologyvirology
- engineering and technologychemical engineeringseparation technologiesdesalinationreverse osmosis
- social scienceseconomics and businesseconomicsproduction economicsproductivity
- medical and health sciencesbasic medicinepharmacology and pharmacypharmaceutical drugsantibiotics
Programme(s)
Call for proposal
FP7-NMP-2011-SMALL-5
See other projects for this call
Funding Scheme
CP-FP - Small or medium-scale focused research projectCoordinator
2400 Mol
Belgium