Cel
The aim of HyTime is to deliver a bioprocess for decentral H2 production from 2nd generation biomass with a productivity of 1-10 kg H2/d. The novel strategy in HyTime is to employ thermophilic bacteria which have shown superior yields in H2 production from biomass in the previous FP6 IP HYVOLUTION.
Biomass in HyTime is grass, straw, molasses or unsold organic goods from supermarkets. The biomass is fractionated and converted to H2 at high efficiency unique for thermophilic fermentation. Dedicated bioreactors and gas upgrading devices for biosystems will be constructed to increase productivity. The H2 production unit will be independent of external energy supply by applying anaerobic digestion to valorize residues. HyTime adds to the security of supply H2 from local sources and eradicates geopolitical dependence.
HyTime builds on HYVOLUTION with 5 partners expanding their research efforts. Three new industrial partners, 2 of which are NEW-IG members, have joined this team with specialist expertise in 2nd generation biomass fractionation and gastechnology. This way a pan-european critical mass in agro- and biotechnological research, the energy and hydrogen sector is assembled to enforce a breakthrough in bioH2 production. The participation of prominent specialists with interdisciplinary competences from academia (1 research institute and 2 universities) and industries (3 SMEs and 2 industries) warrants high scientific quality and rapid commercialization by exploitation of project results and reinforces the European Research Area in sustainable issues.
The partners in HyTime have a complementary value in being developers or stake-holders for new market outlets or starting specialist enterprises stimulating new agro-industrial activities to boost the realization of H2 from renewable resources. The concept of HyTime will facilitate the transition to a hydrogen economy by increasing public awareness of the benefits of a clean and renewable energy carrier.
Dziedzina nauki
- engineering and technologyenvironmental biotechnologybioremediationbioreactors
- social scienceseconomics and businesseconomicsproduction economicsproductivity
- agricultural sciencesagricultural biotechnologybiomass
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energyhydrogen energy
- engineering and technologyindustrial biotechnologybioprocessing technologiesfermentation
Zaproszenie do składania wniosków
FCH-JU-2010-1
Zobacz inne projekty w ramach tego zaproszenia
System finansowania
JTI-CP-FCH - Joint Technology Initiatives - Collaborative Project (FCH)Koordynator
6708 PB Wageningen
Niderlandy