Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Inhalt archiviert am 2024-06-18

Nanoscale Photoactivation and Imaging of Synaptic Spine Dynamics

Ziel

"Synapses are physical sites of communication that transmit and transform information between neurons in a very rapid and dynamic way. Not surprisingly, malfunctioning synapses are at the root of some of our most prevalent neurological and psychiatric disorders.
As synapses are smaller than what diffraction-limited light microscopy can resolve, and densely packed in light-scattering brain tissue, it has been extremely difficult to study their physiology in mechanistic terms. As a result, we still lack an understanding of the basic dynamic organization of neurotransmitter receptors and their molecular partners at mammalian synapses.
While electron microscopy provided detailed snapshots of where glutamate receptors are located inside synapses, this technique does not convey dynamic or functional information. Since existing optical approaches, such as 2-photon glutamate uncaging, do not have sufficient spatial resolution, progress in this area relies on fundamental breakthroughs in live-cell-compatible techniques relying on focused visible light.
We propose to utilize novel STED superresolution microscopy to image and concurrently activate synapses in live spines by superresolution STED photo-uncaging of glutamate. STED microscopy offers optical resolution an order of magnitude higher than current 2-photon or confocal techniques, and we aim to unravel functional and structural nano-dynamics of spines and synapses during plasticity. Specifically, as part of a collaborative effort, we will (1) evaluate newly engineered photosensitive glutamate-containing compounds for superresolution STED-based photo-activation, (2) advance STED microscopy technology to concurrently activate and image synapses beyond the diffraction limit, and (3) use this new methodology to probe synaptic physiology in brain slices with unprecedented resolution. These advances will enable us to address timely questions regarding the dynamic behavior of neurotransmitter receptors in individual spines."

Aufforderung zur Vorschlagseinreichung

FP7-PEOPLE-2010-IEF
Andere Projekte für diesen Aufruf anzeigen

Koordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
EU-Beitrag
€ 186 748,00
Adresse
RUE MICHEL ANGE 3
75794 Paris
Frankreich

Auf der Karte ansehen

Region
Ile-de-France Ile-de-France Paris
Aktivitätstyp
Research Organisations
Kontakt Verwaltung
Philippe Leconte (Mr.)
Links
Gesamtkosten
Keine Daten