Objective
In this call the EU supports activities strengthening space foundations reducing the vulnerability of space assets from space weather events. Solar activity affects the entire Earth environment from the magnetosphere down to the ionosphere and even to the lower atmosphere climate system. The natural hazards of space weather do not only modify the atmosphere but also can catastrophically disrupt the operations of many technological systems, thus causing disruption to people's lives and jobs. The AFFECTS collaborative project uniquely addresses these key topics through state of the art analysis and modeling of the Sun-Earth Chain of Effects on the Earth's ionosphere and their subsequent impacts on communication systems. Multipoint space observations enable world-leading experts at the highest level of interdisciplinary excellence to forecast the relevant space weather effects on the ionosphere quantitatively. The unique set of measurements from satellites in different orbits is complemented by dedicated ground-based monitoring of auroral electrojet and ionospheric activity. The AFFECTS team consists of key European space weather research teams and the US Space Weather Prediction Center of NOAA. To date no dedicated space weather forecast system for ionospheric applications exists in an operational manner, and thus this project would lead to an entirely new capability in Europe that is not only important for society but also does not exist elsewhere. AFFECTS is an unprecedented project which in time of the expected next solar maximum around 2012 will provide advanced prediction, assessment and early warning capabilities of disruptive space weather events that are expected to be particularly poignant to society and thereby meets the needs of Europe’s community of users. AFFECTS will provide Europe with the first advanced early warning and space weather forecast system to help European citizens mitigating the impact on its communication systems.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural sciencesearth and related environmental sciencesatmospheric sciencesmeteorology
- engineering and technologymechanical engineeringvehicle engineeringaerospace engineeringsatellite technology
- natural sciencesphysical sciencesastronomygalactic astronomysolar physics
- natural sciencesearth and related environmental sciencesphysical geographynatural disasters
Programme(s)
Call for proposal
FP7-SPACE-2010-1
See other projects for this call
Funding Scheme
CP - Collaborative project (generic)Coordinator
37073 Gottingen
Germany