Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Inhalt archiviert am 2024-06-18

Tools and methods for in vivo electroporation

Ziel

Electroporation (EP) is the phenomenon in which cell membrane permeability to molecules is increased after exposing the cell to high electric field short pulses. Depending on various factors, such permeabilization will be temporary and will not compromise cell viability ("reversible EP") or will be permanent, or too intense, so that homeostasis will be severely disrupted and the cell will end up dying by necrotic or apoptotic processes ("irreversible EP"). Both EP modes have important applications in biotechnology and in medicine. For instance, reversible EP is now a routine technique in microbiology labs for in vitro DNA transfection. My interest in EP was stimulated during my postdoctoral position at the University of California at Berkeley (2005-2009). There I had the opportunity to participate in the process in which Prof. Rubinsky brought the concept of using irreversible EP as an ablation technique from a mere idea into a clinical reality. In May 2009 I moved to Prof. Mir's lab at Villejuif (France) as a preliminary step in order to reintegrate myself into the EP European research arena. During the 90s, Prof. Mir pioneered the use of EP for enhancing the penetration of anti-tumor drugs. Control over the field magnitude that develops in tissues is crucial for EP therapies. During my postdoctoral position I introduced a set of techniques for such a purpose based on the concept of employing conductive gels. Feasibility of this method was demonstrated experimentally in superficial tumors and I anticipate that this methodology could be also useful for the treatment of different cancers, particularly those located in hollow organs such as esophagus, stomach and colon, which in some occasions are inoperable with current techniques. One specific objective of the project will be to explore in depth this opportunity. The other objectives are also related to in vivo EP applications. Numerical simulations and in vitro models will be used as research tools.

Aufforderung zur Vorschlagseinreichung

FP7-PEOPLE-2009-RG
Andere Projekte für diesen Aufruf anzeigen

Koordinator

UNIVERSIDAD POMPEU FABRA
EU-Beitrag
€ 100 000,00
Adresse
PLACA DE LA MERCE, 10-12
08002 Barcelona
Spanien

Auf der Karte ansehen

Region
Este Cataluña Barcelona
Aktivitätstyp
Higher or Secondary Education Establishments
Kontakt Verwaltung
Eva Martin (Ms.)
Links
Gesamtkosten
Keine Daten