Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenu archivé le 2024-06-18

Silicon-based Ultra-Compact Cost-Efficient System Design for mm-Wave Sensors

Description du projet


Design of semiconductor components and electronic based miniaturised systems

SUCCESS targets to develop a technology platform and best-practice design methods to enable the breakthrough of silicon mm-Wave SoCs for high-volume applications. Silicon technology (CMOS, SiGe) has made tremendous progress towards ever higher device cut-off frequencies. Nowadays all RF components for mm-Wave sensing applications up to 120 GHz can be realized in silicon. Silicon technology hence allows integration of mm-Wave circuitry and digital logic for the realization of a true "mm-Wave System-on-Chip" (SoC). The mm-wavelengths allow mm-size antennas which potentially enable miniaturized wireless sensors systems with the size and form factor of an IC package. However several challenges make it difficult to arrive at real low cost. Firstly no true low-cost mm-wave packaging technologies with antenna-integration are available. Furthermore challenges in mm-wave SoC design arise in form of imprecise modelling and device variations. In addition production testing at such high-frequency is extremely expensive, time consuming, and error prone. SUCCESS is an initiative of 9 major industrial and excellent academic organisations. It represents a vertically integrated consortium bringing together semiconductor foundries, design houses, high-frequency packaging experts and industrial end users. The consortium encompasses universities, research institutions, SMEs and large industrial entities.Three topics will be addressed in the project:1. Development of a low-cost System-In-Package (SiP) technology and design platform with integrated antennas2. mm-Wave System-on-Chip (SoC) design methodology3. mm-Wave Built-In Self Test (BIST) and novel SiP test methodologyThe results will be demonstrated in a 122 GHz miniaturized sensor system, realized as surface mount component using plastic package technology.

Appel à propositions

FP7-ICT-2009-4
Voir d’autres projets de cet appel

Coordinateur

IHP GMBH - LEIBNIZ INSTITUTE FOR HIGH PERFORMANCE MICROELECTRONICS
Contribution de l’UE
€ 922 380,00
Adresse
IM TECHNOLOGIEPARK 25
15236 Frankfurt Oder
Allemagne

Voir sur la carte

Région
Brandenburg Brandenburg Oder-Spree
Type d’activité
Research Organisations
Contact administratif
Uwe George (Mr.)
Liens
Coût total
Aucune donnée

Participants (8)