Cel
The rapidly growing use of high-performance composites in high-end sectors such as aerospace, show that these materials are already commercially viable as long as production volumes are limited and applications not primarily cost-driven. In order to achieve a step-change in the application of high-performance composites in larger-volume applications, HIVOCOMP focuses on achieving radical advances in two materials systems that show unique promise for cost effective, higher-volume production of high performance carbon fibre reinforced parts. These are: 1) advanced polyurethane (PU) thermoset matrix materials offering increased mechanical performance and reduced cycle times compared to epoxy, and 2) thermoplastic PP- and PA6-based self-reinforced polymer composites incorporating continuous carbon fibre reinforcements with lower process times and far higher toughness than current thermoplastic and thermoset solutions. The project will analyse and develop these matrix materials, their combination with advanced textile preforms, and optimise material properties for advanced processing technologies, joining technologies (adhesives / welding) and the incorporation and self-diagnosis (sensing) materials. The focus on breakthrough material innovations are complemented by enabling work covering material testing, chemical and micro-mechanical modelling and simulation tool development, as well as LCA, cost and recycling analysis, and prototyping of typical applications, assuring that the proposed material innovations can be successfully translated into high-impact industrial applications. The project drives the material innovations with the road vehicle sector in mind, but has clearly identified spin-off applications in other sectors. The project foresees a step-wise implementation in future products introduced into larger-volume transport applications starting with validated demonstration parts in 2013, and so ensuring a large-scale societal impact of the innovations achieved.
Dziedzina nauki
- engineering and technologyenvironmental engineeringwaste managementwaste treatment processesrecycling
- engineering and technologymaterials engineeringcomposites
- engineering and technologymaterials engineeringtextiles
- social sciencessocial geographytransport
- natural sciencescomputer and information sciencessoftwaresoftware applicationssimulation software
Zaproszenie do składania wniosków
FP7-NMP-2009-LARGE-3
Zobacz inne projekty w ramach tego zaproszenia
System finansowania
CP-IP - Large-scale integrating projectKoordynator
3000 Leuven
Belgia
Zobacz na mapie
Uczestnicy (15)
38440 Wolfsburg
Zobacz na mapie
70372 Stuttgart
Zobacz na mapie
06123 Perugia
Zobacz na mapie
10043 Orbassano
Zobacz na mapie
3078 Everberg
Zobacz na mapie
80333 Muenchen
Zobacz na mapie
92220 BAGNEUX
Zobacz na mapie
17003 Girona
Zobacz na mapie
1015 Lausanne
Zobacz na mapie
LS2 9JT Leeds
Zobacz na mapie
9700 Oudenaarde
Zobacz na mapie
4910 RIED IM INNKREIS
Zobacz na mapie
80686 Munchen
Zobacz na mapie
48599 GRONAU
Zobacz na mapie
08013 Barcelona
Zobacz na mapie