Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Inhalt archiviert am 2024-06-18

Nano-structured TiON Photo-Catalytic Membranes for Water Treatment

Ziel

More than 1.2 billion people, mostly in poor regions, suffer from water scarcity, due to a global shortfall of potable water caused by population growth, over-exploitation, and pollution. NATIOMEM proposes to alleviate this by developing novel technology for treating contaminated surface and waste water so that it will be potable. This technology will not require electrical power, chemicals or other logistical support, and hence will be suitable for poor areas lacking infrastructure. The technology uses membranes functionalized with a photocatalytic material, eg. N-doped TiO2 (TiON). Raw water will be directed through the membrane while it is exposed to solar radiation. The membrane will filter out particles and micro-organisms larger than the its pore size, and TiON photocatalysis will kill micro-organisms, decompose and mineralize organic pollutants, and oxidize dissolved metals, thus providing a one-step treatment against a broad spectrum of contaminants. In the NATIOMEM project, functionalized membranes will be developed with two approaches: (1) coating conventional membranes with TiON nanostructured films, using several candidate deposition methods, and (2) electrospinning TiON fibers, from which membranes will be fabricated. The functionalized membranes will be characterized for their morphological, physical, mechanical, chemical, and in particular, their photocatalytic properties, and the most effective will be extensively tested to determine their pollution abatement mechanisms and kinetics. A pilot plant incorporating these photocatalytic membranes will be designed, and field tested in the Middle East and in Africa. The results of these tests will be correlated with potential end-user requirements to set the stage for industrial exploitation. Achieving this result will be a breakthrough in water purification and reclamation technology, advancing far beyond the state of the art with a system which is simple, solar enabled, and chemical free.

Aufforderung zur Vorschlagseinreichung

FP7-NMP-2009-SMALL-3
Andere Projekte für diesen Aufruf anzeigen

Koordinator

DHI
EU-Beitrag
€ 568 076,00
Adresse
AGERN ALLE 5
2970 HOERSHOLM
Dänemark

Auf der Karte ansehen

Aktivitätstyp
Research Organisations
Kontakt Verwaltung
Hans Enggrob (Mr.)
Links
Gesamtkosten
Keine Daten

Beteiligte (7)