Objectif
COMETNANO project is an integrated approach of metallic-nanoparticles synthesis, their controlled combustion in internal combustion engines and regeneration of the respective metal-oxides via reduction by renewable means. The main objectives of COMETNANO project are the following: -The production of tailor-made metal fuel nanoparticles with controllable combustion rate. -The utilization of an environmental-friendly way for the regeneration of burned particles (oxides), employing 100% renewable hydrogen produced by solar-thermal dissociation of water in coated monolithic reactors. Under such a concept, metal particles become an energy carrier and a means of converting hydrogen-energy into a medium that can be stored and transported easier and safer. -The innovative exploitation of low-cost raw materials, such as discarded fractions/wastes or by-products of metal industries, for the production of the initial metallic nanoparticles. -The introduction of required modifications, based on the existing mature technology of conventional internal combustion engines (ICEs), for the definition of the first metal-fuelled ICE. -The elimination of NOx emissions by proper combustion tuning. -The investigation of potential environmental and health dangers stemming from metallic and oxidic nanoparticles and the introduction of basic protection measurements. The successful completion of COMETNANO project will provide the necessary answers concerning the feasibility and the environmental benefits of such an innovative concept, thus stimulating the interest of both automotive and metal industries. The COMETNANO consortium consists of 5 organizations from 4 E.U. countries, including 2 Industrial partners, 2 Research Institutes and 1 University.
Champ scientifique
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
Programme(s)
Thème(s)
Appel à propositions
FP7-NMP-2008-SMALL-2
Voir d’autres projets de cet appel
Régime de financement
CP-FP - Small or medium-scale focused research projectCoordinateur
57001 Thermi Thessaloniki
Grèce