Objective
Three-dimensional large area metamaterials, especially Negative Index Materials (NIMs) promise to enable numerous novel and breakthrough applications like perfect lenses and cloaking devices, not only but especially if they exhibit the desired properties in the visible frequency range. For the European Photonics industry it is of paramount importance enabling fabricating such materials as soon as possible, to maintain its important position in the areas of optical components and systems as well as production technologies. Till now such materials have not been produced, yet - neither in 3D nor on large areas, let alone both combined. The aim of NIM_NIL is the development of a production process for 3D NIMs in the visible regime combining UV-based Nanoimprint Lithography (UV-NIL) on wafer scale using the new material graphene and innovative geometrical designs. This project will go beyond state-of-the-art in three important topics regarding NIMs: the design, the fabrication using Nanoimprintlithography (NIL) and the optical characterization by ellipsometry. New designs and the new material Graphene will be investigated to extend the existing frequency limit of 900 nm into the visible regime. The fabrication method of choice is UV-NIL since it allows cost efficient large area nanostructuring, which is indispensible if materials like NIMs should be produced on large scale. The negative refraction will be measured using ellipsometry which is a fast and non-destructive method to control the fabrication process. At the end of the project a micro-optical prism made from NIM will be fabricated to directly verify and demonstrate the negative refractive index. Each aspect of innovation within NIM_NIL – design, fabrication and characterisation of NIMs – is represented by experts in this field resulting in a multidisciplinary highly motivated consortium containing participants from basic research as well as industrial endusers from whole Europe.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
Programme(s)
Call for proposal
FP7-NMP-2008-SMALL-2
See other projects for this call
Funding Scheme
CP-FP - Small or medium-scale focused research projectCoordinator
4407 Steyr
Austria