Objetivo
Living plants in microbial fuel cells might be used as future large-scale Europe wide green energy providers. Such a system can produce in-situ 24 hours per day green electricity or biohydrogen without harvesting the plants. That this might become true was indicated by our first small scale proof of principle experiments describing the so called Plant Microbial Fuel Cell (Plant-MFC) (Strik, 2008, De Schamphelaire, 2008). The Plant-MFC aims to transform solar radiation into green electricity or biohydrogen in a clean and efficient manner. In the Plant-MFC concept, living plants and living microbes form an electrochemical system that is capable of sustainable production of green electricity or biohydrogen from solar energy. By its nature, the Plant-MFC is in potential 5 times more efficient than conventional bio-energy systems. The technology might be implemented in several ways, ranging from local small scale electricity providers to large scale energy wetlands & islands, high-tech energy & food supplying greenhouses and novel biorefineries. This way, affordable bioenergy maybe produced in Europe as well as in developing countries. Plant-MFCs can be integrated in landscapes invisibly which makes this technology socially highly acceptable. However, exploration of new areas of science & technology is necessary to overcome Plant-MFCs bottlenecks and to make this principally clean, renewable and sustainable technology come true. It is now time to show that significant independent European biofuel & bioelectricity production is possible; we propose that Plant-MFCs can be an excellent choice for our future. We expect that Plant-MFC technology can at least cover 20% of Europe’s primary energy need in a real clean & sustainable way. The Plant-MFC concept has several attractive qualities which can provide the significant break through for sustainable energy production in Europe. It will reinforcing competitiveness of Europe since Plant-MFC is world-wide implementable.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energy
- natural sciencesearth and related environmental sciencesatmospheric sciencesmeteorologysolar radiation
- social scienceseconomics and businesseconomicssustainable economy
- engineering and technologyenvironmental engineeringenergy and fuelsfuel cells
- engineering and technologyindustrial biotechnologybiomaterialsbiofuels
Palabras clave
Convocatoria de propuestas
FP7-ENERGY-2008-FET
Consulte otros proyectos de esta convocatoria
Régimen de financiación
CP - Collaborative project (generic)Coordinador
6708 PB Wageningen
Países Bajos