Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-18

Stratospheric ozone: Halogen Impacts in a Varying Atmosphere

Objective

SHIVA aims to reduce uncertainties in present and future stratospheric halogen loading and ozone depletion resulting from climate feedbacks between emissions and transport of ozone depleting substances (ODS). Of particular relevance will be studies of short and very short-lived substances (VSLS) with climate-sensitive natural emissions. We will perform field studies of ODS production, emission and transport in understudied, but critical, regions of the tropics using ship, aircraft and ground-based instrumentation. We will parameterise potential climate sensitivities of emissions based on inter-dependencies derived from our own field studies, and surveys of ongoing work in this area. We will study the chemical transformation of ODS during transport from the surface to the tropical tropopause layer (TTL), and in the stratosphere, using a combination of aircraft and balloon observations together with process-oriented meso-scale modelling. These investigations will be corroborated by space-based remote sensing of marine phytoplankton biomass as a possible proxy for the ocean-atmosphere flux of ODS. From this a systematic emission inventory of VSLS ODS will be established to allow construction of future-climate scenarios. The impact of climate-sensitive feedbacks between transport and the delivery of ODS to the stratosphere, and their lifetime within it, will be studied using tracer observations and modelling. Further global modelling will assess the contribution of all ODS, including VSLS (which have hitherto normally been excluded from such models) to past, present and future ozone loss. Here, the sensitivity of natural ODS emissions to climate change parameters will be used in combination with standard IPCC climate model scenarios in order to drive measurement-calibrated chemical transport model (CTM) simulations for present and future stratospheric ozone; to better predict the rate, timing and climate-sensitivity of ozone-layer recovery.

Fields of science

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

Call for proposal

FP7-ENV-2008-1
See other projects for this call

Coordinator

RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
EU contribution
€ 384 497,00
Address
SEMINARSTRASSE 2
69117 Heidelberg
Germany

See on map

Region
Baden-Württemberg Karlsruhe Heidelberg, Stadtkreis
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Karoline Thomas (Ms.)
Links
Total cost
No data

Participants (13)