Objectif
Biosensor research has blossomed into a mature and highly active field over the past 20 years, both in the laboratory and in the commercial sector. This area attracts enormous attention due to the promise it holds for vital aspects of the human life. The proposed work aims to fabricate a capacitive biosensor, which will be able to perform label-free and fast biodetection based on very small biological samples. We will use the Laser Induced Forward Transfer (LIFT) process for the deposition of biomolecules on the sensor surface. The use of the LIFT technique allows for excellent size control of the deposited samples, as well as repeatability and miniaturization. The use of a capacitive transducer, with an ultra thin silicon membrane acting as one of the capacitor plates, will allow for high sensitivity and low-power operation. The biosensor will be tested with simple binding reactions as well as DNA hybridization. Eventually this sensor can be used with thousands of analytes, such as proteins, different DNA strands, and pathogens. Each step of the fabrication process allows for miniaturization, therefore this biosensor will be a prime candidate for microarray integration in the future. The host group has extensive expertise both in the implementation of the LIFT method and in the fabrication of capacitive sensors and is well-equipped for the proposed work. The researcher has degrees in Electrical Engineering and Physics, while she did her Ph.D. on laser-matter interactions, and is a very good match for this project. This grant will allow the researcher to transfer knowledge from the USA, where she completed her graduate studies, to the European community and reintegrate as a permanent researcher in Europe. A number of students and scientists from various fields will be involved in the proposed experiments. All the results will be published in peer-reviewed journals and will be presented at conferences, while patents will be filed where applicable.
Champ scientifique
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsbiosensors
- natural sciencesbiological sciencesgeneticsDNA
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteins
- natural scienceschemical sciencesinorganic chemistrymetalloids
- natural sciencesphysical sciencesopticslaser physics
Mots‑clés
Appel à propositions
FP7-PEOPLE-2007-4-3-IRG
Voir d’autres projets de cet appel
Régime de financement
MC-IRG - International Re-integration Grants (IRG)Coordinateur
157 72 ATHINA
Grèce