Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Inhalt archiviert am 2024-06-18

Enhancing natural wastewater treatment systems: the role of particles in sunlight-mediated virus inactivation

Ziel

The processes by which viruses are inactivated in sunlight-exposed surface waters remains largely unknown. This lack of information severely limits our ability to predict the efficiency of and rationally design natural treatment systems that utilize sunlight-mediated inactivation (e.g. constructed wetlands). Viruses commonly associate with particles in surface waters, including photoreactive particles that can 1) adsorb viruses and 2) produce reactive oxygen species (ROS) when exposed to sunlight. Virus adsorption onto the surface of photoreactive particles exposes them to elevated ROS concentration and may increase inactivation compared to free viruses. The goal of this research is to characterize the adsorption and inactivation of particle-associated viruses in the dark and exposed to sunlight, with the aim of predicting the fate of viral pathogens within natural systems and using this information to improve their efficiency. We will quantify how different viral characteristics (e.g. isoelectric points, capsid size and composition, genome type) influence adsorption and inactivation, and which modes of inactivation are dominant (e.g. ROS damage to viral host binding sites, destruction of viral capsids by ROS or adsorption, and modification or destruction of genomic nucleic acids by ROS or nucleases). To aid in this study, a novel qPCR-based method for determining virus viability will be developed, a tool that will be of use for a variety of fields including environmental microbiology, public health and medicine. The detailed information gathered in this study will then guide the development of methods to improve the viral removal efficiency of a highly controllable constructed wetland. Different wetland configurations will be tested to promote virus adsorption onto iron-oxide coated sand and to maximize viral exposure to ROS. In so doing, this project will increase the efficacy of low-cost, effective systems for water and wastewater treatment.

Aufforderung zur Vorschlagseinreichung

FP7-PEOPLE-2007-4-2-IIF
Andere Projekte für diesen Aufruf anzeigen

Koordinator

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
EU-Beitrag
€ 188 793,57
Adresse
BATIMENT CE 3316 STATION 1
1015 Lausanne
Schweiz

Auf der Karte ansehen

Region
Schweiz/Suisse/Svizzera Région lémanique Vaud
Aktivitätstyp
Higher or Secondary Education Establishments
Kontakt Verwaltung
Tamar Kohn (Prof.)
Links
Gesamtkosten
Keine Daten