Final Report Summary - FASTQUAST (Ultrafast control of quantum systems by strong laser fields)
Nuclear and electron wave-packet dynamics
- control of high harmonic generation in two-colour fields,
- molecular imaging by strong-field ionisation of aligned molecules,
- strong field coherent control of coupled electron-nuclear dynamics of a molecule by attosecond-precision pulse shaping of the driving femtosecond laser pulse,
- time-resolved photoelectron angular and momentum distributions from strong-field ionisation,
- first XUV-pump-XUV-probe study of ultrafast above threshold electron dynamics at the boundary between femto- and atto-second scales,
- harmonic generation demonstrated as a diagnostic tool in complex ablation plasmas,
- control of matter wave interferences with attosecond precision and picometric structure.
Principles of strong-field coherent control by shaped pulses
- high-fidelity and selective quantum dynamics by composite pulses and parallel adiabatic passage.
Alignment of molecules and applications
- laser-induced field-free permanent planar alignment of molecules,
- field-free quantum cogwheel by shaping of rotational wave packets,
- high-order Kerr effect driven laser filamentation,
- control and femtosecond time-resolved imaging of torsion in a chiral molecule,
- molecular alignment and orientation by electrostatic deflector for rotational-state selection.
Application of ultrafast laser schemes to the control and characterisation of chemical processes
- fluctuating quantum model of the CO vibration in carboxyhemoglobin,
- the primary step in the ultrafast photodissociation of the methyl iodide dimer,
- ultrafast non-radiative decay dynamics of aniline,
- determination of ultrashort molecular dissociation times.
Measurement, stabilisation and control of cold atoms and molecules
- single ion recycling reactions.
Ultrafast information processing
- quantum entanglement between macroscopic diamonds in ambient conditions,
- single-photon-level quantum memory at room temperature,
- multipulse addressing of a Raman quantum memory,
- composite pulses to design efficient implementations of highly-conditional quantum gates,
- high-fidelity local addressing of trapped ions and atoms by composite sequences of laser pulses,
- synthesis of arbitrary SU(3) transformations of atomic qutrits.
Ultrafast spectroscopy and microscopy
- multiplexed coherent anti-Stokes Raman scattering spectroscopy and microscopy using a single shaped femtosecond pulse,
- compressive Fourier-transform spectroscopy.
Production, shaping and characterisation of ultrashort laser pulses
- spatio-temporal characterisation of the UV shaped pulses,
- spatio-temporal control of a multiple-scattering light,
- molecular modulators for short pulse generation,
- isolated sub-fs XUV pulse generation in Mn plasma ablation,
- zepto-second precision pulse shaping,
- direct two-XUV-photon double ionisation of Xe for second order autocorrelation measurement of the XUV pulse duration,
- demonstration of a novel ultrafast pulse shaper: programmable quasi-direct space-to-time pulse shaper with active wave front correction,
- multi-mJ carrier envelope phase stabilise d few-cycle pulses generated by a tabletop laser system,
- development of simplified set-ups and robust algorithms for Spider ultrashort pulse reconstruction,
- elaboration of a new carrier envelope phase stabilisation technique with ultrahigh precision,
- demonstration and analysis of pulse shaping by acousto-optic programmable dispersive filters in the UV and MIR wavelength range,
- demonstration of a novel polarisation shaper.