Objectif
Expanded Polystyrene (EPS), Polyurethane (EPU), Polyethylene (EPE) and Polypropylene (EPP) represent the most popular moulded cushion packaging materials applied for transport packaging applications. However, despite of their functionality, the widespread use of these polymer foams of synthetic origin implies considerable environmental concerns. The depletion of non-renewable fossil raw material resources associated with emissions of greenhouse gases, such as C5H12 and CO2 applied as blowing agents during processing, are the most direct impacts on the environment. Moreover, their non-biodegradable / non-compostable nature associated with the short life of cushion packaging products rises up fundamental concerns regarding waste disposal. Recycling, which is the solely applicable solution for preventing those synthetic foams entering the waste stream, appears in fact to be rarely applied due to cost-ineffectiveness and lack of effective recycling system. With this in mind, bio-based plastics represent an emerging highly promising solution for protective transport packaging provided that they can be processed in foamed products resulting in adequate functional requirements. Within this framework, the project idea is to develop a flexible, energy-efficient and environmentally-sustainable manufacturing process enabling the production of biodegradable foamed 3D-shaped packaging originating from renewable raw materials (i.e. starch and water). Within the proposed process, expansion and foaming of the bio-polymer will be driven by pressurized microwave technology, exploiting the inner water content of the material itself to generate vapour. The proposal is fully compliant with the targeted topic “NMP-2007-2.4-1 Flexible efficient processing for polymers”, as the proposed process offers a valid alternative to petroleum-based polymer processing, involving the use of renewable feedstocks, and involving microwaves as energy-efficient processing solution.
Champ scientifique
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
- engineering and technologymechanical engineeringmanufacturing engineering
- engineering and technologyenvironmental engineeringwaste managementwaste treatment processesrecycling
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationsradio technologymicrowave technology
- natural scienceschemical sciencespolymer sciencespolyurethane
Programme(s)
Appel à propositions
FP7-NMP-2007-SME-1
Voir d’autres projets de cet appel
Régime de financement
CP-TP - Collaborative Project targeted to a special group (such as SMEs)Coordinateur
28100 Novara
Italie