Objective
Materials with nanometre-scale dimensions have unique functional properties that can lead to novel engineering systems with highly useful characteristics. Most traditional approaches to synthesis of nanoscale materials, unlike those in biology, require stringent conditions and often produce toxic byproducts. Within biology itself, biomaterials are highly organized from the molecular to the nanoscale, with intricate architectures that allow for optimum functionality. The focus for this proposal on bio-inspired materials is two-fold. In the first instance I aim to rationally design biologically responsive peptides to control the assembly and dis-assembly of bio-inorganic nanostructures and develop fundamental enabling technologies with applications in bio-sensing. The second focus is on exploiting our understanding of the natural biological nanostructures found in the complex extracellular matrix of tissues in order to engineer synthetic biomimetic nanostructures for improved cell growth and tissue regeneration. Outcomes will include greater fundamental understanding of cell-matrix interactions and cell differentiation as well as longer-term clinical impacts. I have begun to establish a creative research team with many developing international links and a record of timely high quality research. If successful with this proposal I will be able to manage my group to its full potential and to expand its influence and vision. The proposed research involves development of important new international collaborations in the basic sciences and is highly multidisciplinary in nature encompassing elements of engineering, biology, chemistry and physics and ranging from high-resolution techniques of surface analysis to peptide design and cell biology.
Fields of science
Keywords
Call for proposal
ERC-2007-StG
See other projects for this call
Funding Scheme
ERC-SG - ERC Starting GrantHost institution
SW7 2AZ LONDON
United Kingdom