Objective
The proposal aims at the development and clinical validation of advanced non-invasive optical methodologies for in-vivo diagnosis, monitoring, and prognosis of major neurological diseases (stroke, epilepsy, ischemia), based on diffuse optical imaging by pulsed near infrared light. Established diagnostic imaging modalities (e.g. X-ray Computed Tomography, Magnetic Resonance Imaging, Positron Emission Tomography) provide 3D anatomical, functional or pathological information with spatial resolution in the millimetre range. However, these methods cannot be applied continuously or at the bedside. Diffuse optical imaging is expected to provide a valuable complementing tool to assess perfusion and blood oxygenation in brain tissue and their time evolution in a continuous or quasi-continuous manner. The devices will be portable and comparably inexpensive and can be applied in adults and in children. Time-domain techniques are acknowledged as offering superior information content and sensitivity compared to other optical methods, allowing for separation between contributions of surface tissues (skin and skull) and brain tissue. Time-domain imaging can also differentiate between the effects of scatter and those of absorption.The consortium plans major developments in technology and data analysis that will enhance time-domain diffuse optical imaging with respect to spatial resolution, sensitivity, robustness of quantification as well as performance of related instruments in clinical diagnosis and monitoring. The diagnostic value of time-domain diffuse optical imaging will be assessed by clinical pilot studies addressing specific neurological disorders, in comparison with established neurophysiological and neuroimaging techniques. Perspectives regarding clinical application of time-domain diffuse optical brain imaging will be estimated and a reliable basis for a potential commercialisation of this novel technique by European system manufacturers will be created.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
Keywords
Call for proposal
FP7-HEALTH-2007-A
See other projects for this call
Funding Scheme
CP-FP - Small or medium-scale focused research projectCoordinator
20133 Milano
Italy