Projektbeschreibung
Experimentierfeld zur Bewertung und Behebung von Verzerrungen bei KI
Künstliche Intelligenz (KI) wird aufgrund der Vorteile der Automatisierung und Optimierung in zahlreichen Sektoren eingesetzt. KI kann jedoch auch eine Quelle von Voreingenommenheit und Diskriminierung sein, die kontrolliert, gemessen und vermieden werden muss. Darüber hinaus fehlt es an Wissen über die Behebung und Bewertung von Verzerrungen in bestehenden KI-Systemen und über die Entwicklung neuer KI-Instrumente ohne Verzerrungen. Das EU-finanzierte Projekt AEQUITAS wird dies ändern, indem es eine kontrollierte Experimentierumgebung entwickelt, die KI-Herstellern hilft, das Bewusstsein für die von KI-Systemen erzeugten Verzerrungen zu schärfen und bestehende KI-Systeme zu bewerten und (möglicherweise) zu reparieren. Es wird außerdem Leitlinien für durch Technikgestaltung faire KI-Systeme bereitstellen und das Bewusstsein für die Risiken der KI schärfen, wenn sie nicht angemessen gehandhabt und verwaltet wird.
Ziel
AI-based decision support systems are increasingly deployed in industry, in the public and private sectors, and in policy-making. As our society is facing a dramatic increase in inequalities and intersectional discrimination, we need to prevent AI systems to amplify this phenomenon but rather mitigate it. To trust these systems, domain experts and stakeholders need to trust the decisions.
Fairness stands as one of the main principles of Trustworthy AI promoted at EU level. How these principles, in particular fairness, translate into technical, functional social, and lawful requirements in the AI system design is still an open question. Similarly we don’t know how to test if a system is compliant with these principles and repair it in case it is not.
AEQUITAS proposes the design of a controlled experimentation environment for developers and users to create controlled experiments for
- assessing the bias in AI systems, e.g. identifying potential causes of bias in data, algorithms, and interpretation of results,
- providing, when possible, effective methods and engineering guidelines to repair, remove, and mitigate bias,
- provide fairness-by-design guidelines, methodologies, and software engineering techniques to design new bias-free systems
The experimentation environment generates synthetic data sets with different features influencing fairness for a test in laboratories. Real use cases in health care, human resources and social disadvantaged group challenges further test the experimentation platform showcasing the effectiveness of the solution proposed. The experimentation playground will be integrated on the AI-on-demand platform to boost its uptake, but a stand-alone release will enable on-premise privacy-preserving test of AI-systems fairness.
AEQUITAS relies on a strong consortium featuring AI experts, domain experts in the use case sectors as well as social scientists and associations defending rights of minorities and discriminated groups.
Wissenschaftliches Gebiet
Not validated
Not validated
Schlüsselbegriffe
Programm/Programme
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
HORIZON-RIA - HORIZON Research and Innovation ActionsKoordinator
40126 Bologna
Italien