Description du projet
L’impact de la sécheresse sur les interactions plante-microbe chez le blé
Le développement de cultures durables nécessite une meilleure connaissance des interactions plante–microbe au sein de la rhizosphère et de leur réponse au stress hydrique. Le projet RhizoEng, financé par l’UE, adoptera une approche pluridisciplinaire pour décoder le comportement de signalisation des racines, l’assemblage microbien et la tolérance aux sécheresses qui en découle chez le blé. Des expériences seront menées pour identifier différents comportements de signalisation des racines dans des conditions de sécheresse dans un sol naturel et faire la lumière sur le microbiote et les contre-réactions dans la rhizosphère. Les résultats seront intégrés pour créer une stratégie d’«ingénierie de la rhizosphère» afin d’améliorer l’assemblage microbien et la tolérance à la sécheresse du blé. Dès lors, le projet améliorera considérablement notre compréhension de l’interaction plante–microbe dans des conditions de sécheresse dans des environnements de sol naturel et soutiendra le domaine émergent de la culture intelligente de la sécheresse assistée par les microbes.
Objectif
Sustainability of climate smart agriculture is dependent on effectiveness of management strategies. Plant-microbe interactions within the rhizosphere are specifically deliberated to achieve the goal of sustainable crop production. Researchers on a global scale are making serious efforts over the past few decades and have resulted in significantly increase in our understanding regarding various aspects of plant-microbe interactions under abiotic stress, but gap is yet seen in the current knowledge regarding the factors governing host-microbe bilateral crosstalk within the rhizosphere, which has significantly limited the attempts to expedite the host-microbe signaling under abiotic stress conditions including drought. With this proposal I hypothesise that drought-smart cultivation is possible through rhizosphere engineering and that changes in the colonizing microbial consortia may result in resilient, drought resistant plants. To test my hypothesis, I will unite the disciplines of microbiology, plant science, molecular biology, and molecular ecology to decode the root-signaling behavior, microbial assemblage, and subsequent drought tolerance in wheat. I will achieve this by a) conducting a meticulously designed experiment which will allow identification of differential root-signaling behavior in wheat under drought conditions in the natural soil regime; b) multi-disciplinary investigations on soil-microbial dynamics to explain the microbial assemblage and counter-responses in wheat rhizosphere under drought conditions; c) by integrating the wheat-root signaling behavior with the soil-microbial counter responses, which will form the basis to devise ‘rhizosphere engineering’ strategy for improved microbial assemblage and drought tolerance in wheat. Consequently, the outcomes will significantly advance the fundamental aspects of plant-microbial crosstalk under drought conditions in natural soil environment, and emerging field of microbe-aided drought smart cultivation.
Champ scientifique
Not validated
Not validated
Mots‑clés
Programme(s)
Régime de financement
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinateur
8000 Aarhus C
Danemark