Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS

Development of gamma prime strengthened CoNi based superalloy for advanced sustainable manufacturing technologies

Project description

Eco-friendly, affordable Co–Ni-based superalloys

Superalloys are high-strength alloys that are resistant to high temperatures. Co-based superalloys strengthened by gamma prime precipitates have attracted a great deal of attention for use in advanced jet engines as an alternative to Ni-based superalloys. However, their production is challenging. Funded by the Marie Skłodowska-Curie Actions programme, the CNSTech project plans to develop Co–Ni superalloys using an advanced powder metallurgy method. This multidisciplinary study will involve thermodynamical modelling, physical metallurgy, chemical metallurgy, materials processing and experiments.

Objective

Improvement of the high temperature behavior of Ni based superalloys along the past decades was limited by approaching the gamma prime (γ′) solvus temperature to the Ni melting point. Although the benefits obtained were undoubtedly, their maximum operative temperature is a growing concern towards the sustainable development of advanced jet engine and gas turbine applications. Co based superalloys, strengthened by γ′ precipitates (with a L12 crystal structure), have recently attracted immense attention due to their excellent high temperature performance. They are considered an alternative to Ni-based ones if the stability and efficiency requirements are met. However, production of Co based superalloys via advanced sustainable manufacturing processes has several issues. CNSTech project proposes the development of the next generation Powder Metallurgy (PM) based CoNi superalloys via a sustainable metallurgy framework. The project will cover three stages: pre-build design, process design, and post-process design. First, thermodynamical modeling will be used to design an optimum and high entropy multicomponent CoNi based alloy. Then, modern powder technology (an entrance for advanced sustainable manufacturing processes such as PM and additive manufacturing) will be used for production. Finally, post-process design will be conducted via heat treatment, hot isotactic pressing, and process cost optimization. This multidisciplinary proposal covers a wide range of different fields including thermodynamical modeling, physical metallurgy, chemical metallurgy, materials processing, and design of experiments. By this multidisciplinary approach, CNSTech aims to open up new horizons to create a novel 100% European made processing route for manufacturing of cost-effective and eco-friendly high temperature CoNi superalloy towards the UN Sustainable Development Goals.

Coordinator

FUNDACION IMDEA MATERIALES
Net EU contribution
€ 172 932,48
Address
CALLE ERIC KANDEL 2 PARQUE CIENTIFICO Y TECNOLOGICO TECNOGETAFE
28906 Getafe
Spain

See on map

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Activity type
Research Organisations
Links
Total cost
€ 172 932,48