Project description
New farming robots to spray and use novel treatments in steep slope vineyards
With robotics technologies advancing at breakneck speeds, many industry sectors are eager to welcome them. One of these is agriculture, which is facing the issue of phytopharmaceutical spraying and a need to reduce their over dosage while retaining efficiency and crop yield. The EU-funded SCORPION project will address many of the challenges involved while also developing a modular unmanned tractor in cooperation with several agricultural and robotics associations, institutions and companies. The goal is to reduce phytopharmaceutical usage while maintaining crop yield, efficiency and value. This machine will initially focus on steep-slope vineyards that present more difficulties during spraying.
Objective
Spraying in agriculture represents a societal challenge due to its negative impact in human and animal health and in environment. Increasing spraying efficiency towards the objective of “right time, right amount, right place”, involves reduction of losses and, consequently, amount of phytopharmaceuticals used, water usage, and human and animal exposure to pesticides, and the increase of the spraying system availability while reducing labor costs. Furthermore, adoption of new ecological spraying treatments to increase both yield and treatment efficiency is desirable. Agriculture in rough terrain is also challenging, due to the steepness of some terrain, lack of space to manoeuvre, difficulties of communications due to natural obstacles and harsh atmospheric conditions associated.
To cope with these challenges a consortium with complementary precision farming actors was formed for SCORPION project, bringing together steep slope vineyards associations (CERVIM, INNOVI), robotics and agricultural machinery RTD institutions (INESC, EUT, and IMAMOTER, WUR), SMEs and large company (TEYME, Deimos, SPI), and an institution devoted to innovation in the sector (IPN).
SCORPION’s solution will be a safe and autonomous precision spraying tool integrated into a modular unmanned tractor (robotics platform). It will focus on steep slope vineyards but with impact in other high-value permanent crops (olive groves and fruiticulture). SCORPION’ will consider Global Navigation Satellite System (EGNSS) receiver (triple frequency, PPP, OS-NMA, HAS) fused with other sensors, to increase the solution reliability, accuracy and safeness, and to enable autonomous ultraviolet light treatments (to eliminate partial need of phytopharmaceuticals) and to allow high precision spraying in permanent crops.
SCORPION will bring the TRL of the technologies involved from 5 to 7 and will originate a modular spraying robot. These four modules can be explored independently or together.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- agricultural sciencesagriculture, forestry, and fisheriesagriculturehorticultureviticulture
- engineering and technologymechanical engineeringvehicle engineeringaerospace engineeringsatellite technology
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringrobotics
Keywords
Programme(s)
Funding Scheme
IA - Innovation actionCoordinator
4200 465 Porto
Portugal