Projektbeschreibung
KI-gestützte Prognosen zum Zusammenhang zwischen Klimawandel und Extremwetterereignissen
Der Klimawandel begünstigt extreme Wetterereignisse wie Hitzewellen, verheerende Waldbrände, Wirbelstürme, Überschwemmungen und Dürren. Schwerpunkt des EU-finanzierten Projekt XAIDA ist ein neuer datengestützter, wirkungsbasierter Ansatz zur Charakterisierung, Erkennung und Attributionsanalyse von Extremwetterereignissen. Kombiniert werden hierfür neue KI-Techniken (künstliche Intelligenz), Attributionsforschung, Analysen atmosphärischer Dynamik, Klimamodellierung, maschinelles Lernen und kausale Inferenz. Die Ergebnisse sollen Aufschluss darüber geben, inwieweit der Klimawandel zu atmosphärischen Phänomenen wie Wirbelstürmen und konvektiven Wetterereignissen beiträgt, was bislang kaum erforscht und quantifiziert ist. Zudem werden Analysemethoden für kausale Zusammenhänge entwickelt, die zu Extremwetterereignissen führen.
Ziel
Often, extreme events provide representations of the future climate, but not all extremes are harbingers of the future. Thus, in order to be useful for adaptation in support to future projections, a causal link between events and human influence on climate must be established or refuted. This is why the “Extreme event attribution” field has recently developed. However, extreme event detection, attribution and projections studies currently face major limitations.
XAIDA will fill these gaps. Using new artificial intelligence techniques, and a strong two-way interaction with key stakeholders, it will (i) characterize, detect and attribute extreme events using a novel data-driven, impact-based approach, (ii) assess their underlying causal pathways and physical drivers using causal networks methods, and (iii) simulate high-intensity and as yet unseen events that are physically plausible in present and future climates.
To achieve this, XAIDA brings together teams of specialists in extreme event attribution, atmospheric dynamics, climate modelling, machine learning and causal inference, to:
● Understand the effect of climate change on a variety of impacting atmospheric phenomena currently poorly understood or quantified (cyclones, convective storms, long-lived anomalies, or summer compound events), both for past and future evolutions;
● Develop, in co-design with a community of key stakeholders, a novel, broader and impacts-based attribution and projection framework which extracts causal pathways of extremes;
● Develop storylines of events of unseen intensity, based on machine learning methods;
● Provide new tools for model assessment of causal pathways leading to extreme events and investigate the causes of disagreements between models and observations;
● Develop an interaction and communication platform with stakeholders with the ambition to improve training and education on climate change and impacts and to bring these developments to future operational climate services
Wissenschaftliches Gebiet
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
Schlüsselbegriffe
Programm/Programme
Thema/Themen
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenUnterauftrag
H2020-LC-CLA-2020-2
Finanzierungsplan
RIA - Research and Innovation actionKoordinator
75794 Paris
Frankreich