Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Predictive Maintenance for railway switches. Smart sensor networks on a machine learning analytics platform

Article Category

Article available in the following languages:

Un sistema che utilizza l’intelligenza artificiale e l’Internet delle cose applicato all’industria per inaugurare una nuova era di manutenzione predittiva nel settore ferroviario

Considerando che il trasporto è responsabile di circa il 20 % delle emissioni di CO2, le ferrovie devono essere parte della soluzione per affrontare i problemi ambientali. Un’iniziativa dell’UE sta rendendo le operazioni ferroviarie più digitali e competitive per un futuro sostenibile.

Il progetto Andromeda, finanziato dall’UE, ha sviluppato un sistema che integra i dispositivi intelligenti dell’Internet delle cose per il settore industriale (IIoT, Industrial Internet of Things) e l’intelligenza artificiale (IA) nella prima soluzione di manutenzione predittiva completa in assoluto per le infrastrutture ferroviarie. «La ferrovia è il mezzo di trasporto motorizzato più sicuro, efficiente e sostenibile», osserva il coordinatore del progetto nonché co-fondatore e direttore amministrativo e finanziario di KONUX, Maximilian Hasler. «In generale, l’obiettivo è quello di aiutare i gestori dell’infrastruttura e gli altri soggetti interessati a migliorare la capacità e la disponibilità della rete, ad estendere la durata di vita delle risorse e a rendere più efficiente la manutenzione da parte dei dipendenti».

La prima manutenzione predittiva ferroviaria progettata per le soluzioni IA

Il sistema monitora e analizza continuamente la salute dei componenti chiave e fornisce raccomandazioni attuabili. In ultima analisi, consente una migliore pianificazione della manutenzione aiutando i gestori dell’infrastruttura ad anticipare i guasti prima che si verifichino e a conoscere il tempo e il tipo ottimale di manutenzione necessaria. In particolare, il sistema migliora la disponibilità attraverso la segnalazione tempestiva delle condizioni critiche e la manutenzione mirata. Aiuta inoltre a digitalizzare l’infrastruttura ferroviaria attraverso il monitoraggio automatizzato delle condizioni 24 ore su 24, 7 giorni su 7. L’IA può identificare e aiutare a prevenire i guasti prima che si verifichino. Un pannello di controllo fornisce una panoramica continuativa di tutti gli interruttori critici e delle loro condizioni. La soluzione riduce anche i costi di manutenzione grazie alla previsione dei guasti e ad azioni di manutenzione efficaci, aumentando la durata dei beni grazie alla manutenzione predittiva e al controllo qualità delle attività di manutenzione svolte. Un controllo della qualità in fase di manutenzione identifica quali azioni hanno avuto successo e il tempo necessario per determinare le procedure più economiche e sostenibili.

Aumentare l’affidabilità e la capacità del sistema ferroviario

I sensori ad alta precisione sono la chiave per ottenere importanti informazioni sullo stato di salute dei componenti. Per questo, il consorzio ha sviluppato un dispositivo IIoT proprietario e autonomo, ottimizzato per applicazioni di manutenzione predittiva e condizioni ambientali estreme. È completamente certificato e soddisfa i requisiti di sicurezza più avanzati. Il dispositivo può essere facilmente installato sul posto in meno di 10 minuti, un fattore fondamentale perché, grazie a questa rapidità, non disturba il regolare traffico ferroviario. L’architettura all’avanguardia rende la gestione dei dati scalabile, flessibile, reattiva e sicura. «Ci permette di passare dall’addestramento alle operazioni più rapidamente di quanto sia mai stato possibile prima», osserva Hasler. «La sua modularità ci permette di creare nuovi ambienti per i clienti in modo incredibilmente rapido e affidabile». Gli algoritmi di apprendimento automatico sono in grado di generare informazioni prima impensabili. «Ora possiamo dire ai nostri clienti come si svilupperà lo stato di salute delle loro risorse nei successivi 90 giorni con un tasso di successo superiore al 90 %», spiega Hasler. Ciò consente agli utenti finali di pianificare meglio i tempi delle procedure di manutenzione in modo da poter avere il controllo sulle loro esigenze di manutenzione e disponibilità dei beni. «Possiamo anche fornire raccomandazioni sulle tempistiche e tipologie ottimali di manutenzione necessaria misurando e confrontando l’efficacia e la sostenibilità delle diverse azioni di manutenzione che osserviamo sul posto». Migliorando la capacità, l’affidabilità e la convenienza del settore ferroviario, Andromeda contribuisce a renderlo più competitivo rispetto ad altri mezzi di trasporto meno sostenibili. Hasler conclude: «In questo modo, il progetto aiuterà i paesi a raggiungere i propri obiettivi di risparmio delle emissioni e a rendere l’esperienza dei passeggeri più affidabile, comoda e piacevole».

Parole chiave

Andromeda, manutenzione, settore ferroviario, manutenzione predittiva, ferrovia, IIoT, infrastruttura ferroviaria

Scopri altri articoli nello stesso settore di applicazione