Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Article Category

Content archived on 2023-03-07

Article available in the following languages:

Finally! Scientists peek inside molecules

Physicists in Europe have successfully glimpsed the motion of electrons in molecules. The results are a major boon for the research world. Knowing how electrons move within molecules will facilitate observations and fuel our understanding of chemical reactions. Presented in th...

Physicists in Europe have successfully glimpsed the motion of electrons in molecules. The results are a major boon for the research world. Knowing how electrons move within molecules will facilitate observations and fuel our understanding of chemical reactions. Presented in the journal Nature, the study is supported via three EU-funded projects, which received a total of EUR 14.4 million in financial support from the EU. The XTRA ('Ultrashort XUV (extreme ultra-violet) pulses for time-resolved and non-linear applications') and MAXLAS ('Emerging X-ray science and technology: combining laser and accelerator physics') projects are backed with EUR 3 million and EUR 1.4 million respectively under the Marie Curie mobility scheme of the Sixth Framework Programme (FP6). The LASERLAB-EUROPE ('The integrated initiative of European laser research infrastructures II) is funded under the 'Research infrastructures' budget line of the Seventh Framework Programme (FP7) to the tune of EUR 10 million. The physicists, led by Professor Marc Vrakking, Director of the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy in Germany, used attosecond laser pulses to clinch this latest technical feat. Scientists were unable to observe this motion in the past because of the extreme speediness of electrons. An attosecond is a billionth of a billionth of a second. Light covers a distance of less than 1 millionth of a millimetre during an attosecond. This is basically equal to the distance from one end of a small molecule to the other. By creating attosecond laser pulses, the scientists could snap 'pictures' of electrons' movements within molecules. For the purposes of this study, the physicists looked at the hydrogen molecule (H2) - with just two protons and two electrons, experts call H2 the 'simplest molecule'. The team used their attosecond laser to determine how ionisation occurs within a hydrogen molecule. During ionisation, one electron is removed from the molecule while the energy status of the other electron changes. 'In our experiment we were able to show for the first time that with the help of an attosecond laser we really have the ability to observe the movement of electrons in molecules,' Professor Vrakking explained. 'First we irradiated a hydrogen molecule with an attosecond laser pulse. This led to the removal of an electron from the molecule - the molecule was ionised. In addition, we split the molecule into two parts using an infrared laser beam, just like with a tiny pair of scissors,' he added. 'This allowed us to examine how the charge distributed itself between the two fragments - since one electron is missing, one fragment will be neutral and the other positively charged. We knew where the remaining electron could be found namely in the neutral part.' For the last 30 years or so, scientists have been using femtosecond lasers to look at molecules and atoms. A femtosecond is one millionth of one billionth of a second, so it makes it 1,000 times slower than an attosecond. It is easy to track the movement of molecules and atoms when femtosecond lasers are used. Scientists helped drive this technology forward by developing attosecond lasers, which are benefitting diverse studies in natural sciences including the study outlined here. Commenting on the calculations and the complexity of the problem, co-author Dr Matthias Kling of the Max-Planck Institut für Quantenoptik in Germany, said: 'We found out that also doubly excited states, i.e. with excitation of both electrons of molecular hydrogen, can contribute to the observed dynamics.' Professor Vrakking concluded: 'We have not - as we originally expected - solved the problem. On the contrary, we have merely opened a door. But in fact this makes the entire project much more important and interesting.' Key contributions in this study were made by scientists from Colombia, France, Germany, Italy, the Netherlands, Spain, Sweden and the UK.

Countries

Colombia, Germany, Spain, France, Italy, Netherlands, Sweden, United Kingdom

Related articles