Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-18

Position and Personalize Advanced Human Body Models for Injury Prediction

Article Category

Article available in the following languages:

A smarter alternative to the crash test dummy

EU-funded researchers have developed user-friendly tools to position and personalise advanced Human Body Models for use in designing safer vehicles.

Whenever you get behind the wheel or strap on a seatbelt as a passenger, you are surrounded by passive safety mechanisms. Whether it be the seat belt itself, an air bag or the layout of the passenger area, passive safety refers to all the design measures taken to protect a vehicle’s occupants from injury. Although these mechanisms provide a substantial amount of protection by dissipating the energy of an impact, the effect that human variability has on their effectiveness is difficult to measure. For example, although an airbag may save the life of a healthy adult, it could cause serious harm to a child or an elderly person. Whereas traditional testing mechanisms favour the use of crash test dummies and of averages, these processes fails to account for some of the most common human variabilities. In order to reduce fatalities, such passengers as children and the elderly need to be taken into account in the design of safety vehicle systems. One possible solution is the use of advanced Human Body Models (HBM), which better represent population variability and could provide more accurate injury predictions than crash test dummies. Unfortunately, advanced HBM are underutilised in industrial R&D. One reason for this is that the models are typically only available in one posture, making it difficult to position them in actual vehicle environments. There is also a lack of a model ‘family’ that represents all types of humans. To remedy these shortcomings, the EU-funded PIPER project has developed new tools to position and personalise advanced HBM. A model for safety ‘The main objective of the PIPER project was to develop user-friendly tools to position and personalise these advanced HBMs,’ explains Project Coordinator Philippe Beillas. ‘By facilitating the generation of population and subject-specific HBMs and their usage in production environments, the PIPER tools will enable new industrial R&D applications for the design of restraint systems.’ Working closely with industrial users, the project developed an Open Source software framework to facilitate the positioning and personalising of human body models for safety. The framework includes state-of-the-art, real time simulation techniques for positioning and advanced morphing techniques to match various population dimensions. It can be used with the leading HBMs and, because of its modularity, can be further extended to meet the unique needs of individual users. The project also developed Open Source child models that can describe children between 1.5 and six years of age and are capable of simulating the response of a child upon impact. ‘These models are specifically designed to simulate the interaction between children and common child restraint systems during accidents,’ says Beillas. Safer roads ahead Numerous academic and industrial users have already expressed interest in the software framework and the Open Source child models, and many are considering integrating them into their advanced R&D processes. ‘Upon the project’s completion, all of these tools will be available free of charge – a first for our field,’ says Beillas. ‘This is important as it ensures that more industrial R&D will use human body models for assessing passive safety mechanisms and, as a result, road safety will be improved.’ The software and tools will be available online at www.piper-project.org as of the end of April 2017.

Keywords

PIPER, road safety, Human Body Models, HBM, industrial R&D, crash test dummies

Discover other articles in the same domain of application