Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Zawartość zarchiwizowana w dniu 2024-05-27

Production of energy saving high silicon electrical steel by hot dip coating and diffusion annealing (DIFFANSTEEL)

Cel

Objectives and problems to be solved:
The objective of this project l is to utilise these novel technologies to develop an economic integrated manufacturing route for high silicon steel laminations incorporating:
- selective alloying by the preferential diffusion of Si from a Si rich coating applied to conventional low silicon steel strip;
- to develop rapid heating techniques for the new materials;
- to specifically develop a novel rapid surface finishing procedure, patented for stainless steel, for these new materials;
- to devise a lamination cutting process for the brittle high silicon steels;
- to produces energy-saving motor and transformer designs that can exploit the new materials;
- to assess the potential markets.
Description of the work:
The work plan combines several novel technologies to develop a production route for high silicon steels. Initially the production of low silicon steel strip raw material will be optimised to achieve as much thickness reduction as possible while the material has a low enough silicon content to be workable. The silicon rich coating parameters and diffusion annealing parameters must then be optimised to provide homogeneous high silicon steel. The oxide scale generated during heating needs removal. A surface finishing technique patented by one partner will be developed to allow it to be used on these new materials. The requirement for any further heat treatment will be established. Novel rapid heating techniques for these complex and changing materials will be developed to allow processing before aging phenomena can occur. Techniques for stamping or cutting of laminations from this brittle high silicon steel will be developed. Electrical motors / transformers will be modelled and in some cases manufactured using the new material. A technical and economic assessment of the process and the products produces from the high silicon steel will be carried out. Investigation of the need for final cold rolling.
Expected results and exploitation plans:
The main output from the programme will be scientific knowledge of the novel approach to alloying high silicon magnetic steels and an outline design of an in-line production route with supporting economic and technical data. The potential economic impact of the project's outcome is high, representing a completely novel integrated approach to the production of high silicon steels. The outcomes should contribute substantially to the EU's position in the world metals market. The partnership is well able to exploit the technology itself as it contains an electrical steel manufacturer, a company that makes laminations for motors and a company which designs motors. The partners would aim to build upon their existing patents to cover the new process. Exploitation by licensing the technology will be explored at a later date.

Zaproszenie do składania wniosków

Data not available

System finansowania

CSC - Cost-sharing contracts

Koordynator

C-TECH INNOVATION LIMITED
Wkład UE
Brak danych
Adres
Capenhurst Technology Park
CHESTER
Zjednoczone Królestwo

Zobacz na mapie

Linki
Koszt całkowity
Brak danych

Uczestnicy (5)