Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Low-latency Perception and Action for Agile Vision-based Flight

Opis projektu

Opracowywanie autonomicznych systemów sterowania dronami porównywalnych z ludzkimi pilotami

Pomimo coraz wyższego stopnia zaawansowania, drony nie są w stanie samodzielnie poruszać się w skomplikowanych otoczeniach lepiej niż ludzie. Opracowanie bardziej elastycznych i sprawniejszych robotów wymaga zastosowania szybszych czujników i przetwarzania danych z niewielkimi opóźnieniami. Uczestnicy finansowanego przez Unię Europejską projektu AGILEFLIGHT zamierzają opracować innowacyjne metody naukowe, które pozwolą na zaprojektowanie i zbudowanie zwinnego, autonomicznego systemu do sterowania dronami wykorzystującego rozpoznawanie obrazów, który będzie w stanie prowadzić drony przez nieznane, pełne przeszkód środowiska, w których nie będzie możliwe korzystanie z sygnału GPS. System ma radzić sobie nawet z omijaniem ruchomych przeszkód. Celem jest osiągnięcie poziomu nawigacji, manewrowości i zwinności porównywalnej z profesjonalnymi pilotami dronów. W tym celu naukowcy zamierzają opracować algorytmy łączące zalety standardowej kamery oraz kamery dynamicznej. W ramach projektu AGILEFLIGHT powstaną również nowatorskie metodologie, które pozwolą na przeprowadzanie szybkich manewrów w nieznanych, zmiennych i pełnych przeszkód środowiskach. Rezultaty prac przyniosą korzyści służbom ratunkowym, a także mogą przyczynić się do usprawnienia prac kontrolnych i dostaw drogą powietrzną.

Cel

Drones are disrupting industries, such as agriculture, package delivery, inspection, and search and rescue. However, they are still either controlled by a human pilot or heavily rely on GPS for navigating autonomously. The alternative to GPS are onboard sensors, such as cameras: from the raw data, a local 3D map of the environment is built, which is then used to plan a safe trajectory to the goal. While the underlying algorithms are well understood, we are still far from having autonomous drones that can navigate through complex environments as good as human pilots. State-of-the-art perception and control algorithms are mature but not robust: coping with unreliable state estimation, low-latency perception, real-time planning in dynamic environments, and tight coupling of perception and action under severe resource constraints are all still unsolved research problems. Another issue is that, because battery energy density is increasing at a very slow rate, drones need to navigate faster in order to accomplish more within their limited flight time. To obtain more agile robots, we need faster sensors and low-latency processing.

The goal of this project is to develop novel scientific methods that would allow me to demonstrate autonomous, vision-based, agile quadrotor navigation in unknown, GPS-denied, and cluttered environments with possibly moving obstacles, which can be as effective in terms of maneuverability and agility as those of professional drone pilots. The outcome would not only be beneficial for disaster response scenarios, but also for other scenarios, such as aerial delivery or inspection. To achieve this ambitious goal, I will first develop robust, low-latency, multimodal perception algorithms that combine the advantages of standard cameras with event cameras. Then, I will develop novel methods that unify perception and state estimation together with planning and control to enable agile maneuvers through cluttered, unknown, and dynamic environments.

System finansowania

ERC-COG - Consolidator Grant

Instytucja przyjmująca

UNIVERSITAT ZURICH
Wkład UE netto
€ 2 000 000,00
Adres
RAMISTRASSE 71
8006 Zurich
Szwajcaria

Zobacz na mapie

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity
€ 2 000 000,00

Beneficjenci (1)