Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

European Magnesium Interactive Battery Community

Cel

Energy storage is a key technology to facilitate a widespread integraWith the growing use of intermittent energy sources in power grids, there is a growing mismatch between when energy is produced and when it is consumed. This has led to the need of energy storage or demand-response systems in order to use the energy in a balanced and efficient way. Given this context, the Micro Energy Storage (MES) systems are expected to seek radically new approaches to supply energy where it is needed. Buildings are becoming a local use micro energy-hubs consuming, producing, storing, supplying energy and having the potential to take up an important role in the power-supply system stability which generate energy with renewables, provide storage for electric and thermal energy and deliver demand response. For Micro Energy Storage in Buildings (MESB) using stochastic renewables energy, the most suitable technology is the lithium-ion batteries (LIB). However, current LIB technologies are facing severe challenges in safety, energy density and price. While most of today's R&D is concentrated on LIB systems, shifting towards non-lithium rechargeable batteries may open up effective ways to overcome such challenges. The rechargeable magnesium battery (RMB) constitutes a paradigmatic example of such promising, alternative non-lithium energy storage systems, following pioneering efforts and breakthroughs from world-wide researchers. The potential to use metallic magnesium anodes in rechargeable batteries brings important advantages in terms of energy density, cost and safety. E-MAGIC gathers the key scientific and technical researchers in Europe to develop the required new frontier knowledge and foundational approaches on RMB, bringing an effective work on R&D by a rational design of high voltage/high capacity cathode materials and novel electrolytes to overcome the rate-limiting reaction and transport processes, in order to deliver a safe RMB with more 400 Wh kg-1 and less than 100 €/Kwh.

Zaproszenie do składania wniosków

H2020-FETPROACT-2018-2020

Zobacz inne projekty w ramach tego zaproszenia

Szczegółowe działanie

H2020-FETPROACT-2018-01

Koordynator

FUNDACION CIDETEC
Wkład UE netto
€ 918 687,50
Adres
PASEO MIRAMON 196 PARQUE TECNOLOGICO DE MIRAMON
20014 San Sebastian
Hiszpania

Zobacz na mapie

Region
Noreste País Vasco Gipuzkoa
Rodzaj działalności
Research Organisations
Linki
Koszt całkowity
€ 918 687,50

Uczestnicy (9)