Opis projektu
Wykorzystanie technik uczenia maszynowego do pomiaru osiągów samolotów
Obecnie działalność linii lotniczych opiera się na systemie zarządzania lotem (FMS), który służy do planowania i zarządzania trajektoriami lotu. Wspomniany FMS wykorzystuje jednak model osiągów jednego producenta dla każdego typu samolotu i opiera się na prognozach pogody przed lotem. Podejście to nie jest dokładne i nie zapewnia precyzyjnych pomiarów osiągów samolotu. Zagadnieniem tym zajmie się zespół finansowanego ze środków UE projektu PERF-AI, który ma na celu wykorzystanie uczenia maszynowego do analizy danych lotu. Umożliwi to dokładne pomiary rzeczywistych osiągów samolotu przez cały okres jego eksploatacji. W ramach projektu zidentyfikowane zostaną odpowiednie algorytmy uczenia maszynowego, oceniona zostanie ich dokładność pod kątem analizy danych lotu oraz opracowane zostaną modele matematyczne do optymalizacji trajektorii rzeczywistych lotów.
Cel
PERF-AI will apply Machine Learning techniques on flight data (parametric & non-parametric approaches) to accurately measure actual aircraft performance throughout its lifecycle.
Within current airline operations, both at flight preparation (on-ground) & at flight management (in-air) levels, the trajectory is first planned, then managed by the Flight Management System (FMS) using a single manufacturer’s performance model that is the same for every aircraft of the same type, & also on weather forecast that is computed long before the flight. It induces a lack of accuracy during the planning phase with a flight route pre-established at specific altitudes & speeds to optimize fuel burn, from take-off to landing using aircraft performances that are not those of the real aircraft. Also, the actual flight will usually shift from the original plan because of Air Traffic Control (ATC) constraints, adverse weather, wind changes & tactical re-routing, without possibility for the flight crew, either using the FMS or through connected services to tactically recompute the trajectory in order to continuously optimize the flight path. This is in particular due to the limitations of the performance databases that the current systems are using.
Hence, PERF-AI is focusing on identifying adequate machine learning algorithms, testing their accuracy & capability to perform flight data statistical analysis & developing mathematical models to optimize real flight trajectories with respect to the actual aircraft performance, thus, minimizing fuel consumption throughout the flight.
The consortium consists of Safety-Line (FR) & INRIA (FR), having full expertise at Aircraft Performance & Data Science, hence, able to fully propose, test & validate different statistical models that will allow to accurately solve some optimization challenges & implement them in an operational environment.
PERF-AI total grant request to the CSJU is 568 550€ with total project duration of 24 months.
Dziedzina nauki
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.
- natural sciencesearth and related environmental sciencesatmospheric sciencesmeteorology
- engineering and technologymechanical engineeringvehicle engineeringaerospace engineeringaircraft
- natural sciencesmathematicsapplied mathematicsstatistics and probability
- engineering and technologyenvironmental engineeringenergy and fuels
- natural sciencescomputer and information sciencesartificial intelligencemachine learning
Program(-y)
Zaproszenie do składania wniosków
Zobacz inne projekty w ramach tego zaproszeniaSystem finansowania
CS2-IA - Innovation actionKoordynator
75015 Paris
Francja
Organizacja określiła się jako MŚP (firma z sektora małych i średnich przedsiębiorstw) w czasie podpisania umowy o grant.