Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Graphene Flagship Core Project 2

Periodic Reporting for period 1 - GrapheneCore2 (Graphene Flagship Core Project 2)

Okres sprawozdawczy: 2018-04-01 do 2020-03-31

This report described the progress of the Graphene Flagship during the second core project (Core 2), corresponding to a period that covered months 54-78 of the flagship project. This period witnessed a general shift towards higher technology levels and increased role of system-level research, e.g. by the six spearhead projects that were launched at the beginning Core 2. This shows that the flagship is well on the way towards realizing its overarching goal of taking graphene from academic laboratories to society.
During the final months of the period, many partners were affected by the corona virus crisis, which led to closings of laboratories in many European countries and caused difficulties in reaching some of the project's ambitious targets. This affected in particular the completion of many of the prototypes which rely on several partners' joint efforts during the entire project period and are therefore only finalized close to the end of the project.
In the past 24 months, the flagship has made several scientific and technological breakthroughs and implemented many measures that accelerate the large-scale industrialization of GRM-based technologies.
One example of these actions is the authoritative white book on 2D Materials Production and Processing which was produced under the leadership of Mar Garcia Hernandez (leader of WP3 Enabling Materials) and involving 70 co-authors. During the first two months after its publication, the white book was downloaded some 27,000 times, which clearly shows the need for and interest in such a reference work.
In the work packages on Spintronics, WP2, and Wafer-Scale Integration, WP10, teams at RWTH and the Italian Institute of Technology developed CVD growth of very high-quality graphene for electronics applications.
In WP5, Biomedical technologies, the partners MCS and g.tec launched two new commercial products based on the work carried out in the work package on graphene-based FET technology for measuring electrical signals in and on the surface of the brain. These are the first products developed by the flagship in the area of biomedical technologies.
In WP7 Electronic Devices, researchers at TU Wien, AMO GmbH and University of Pisa have demonstrated the world's first integrated amplifier based on 2D materials and compatible with flexible substrates. It outperforms competing technologies by a large margin and incorporates many individual components with a high degree of reproducibility, which is a crucial requirement for components integrated in complicated circuits such as operational amplifiers. As technologies mature, the issue of reproducibility and manufacturability is becoming more prominent –breakthroughs in this direction include the quality monitoring and characterisation techniques based on terahertz measurements developed in WP7 by the Technical University of Denmark.
In WP8 Photonics and Optoelectronics, Politecnico of Milan and collaborators have developed a prototype (TRL 4) of a compact coherent Raman microscope which can be used for detection of cancerous tumours in real time in operating theatres. This is an example of novel diagnostic tools exploiting GRMs in healthcare applications.
An example of combined structural and electrical uses of graphene is given by aerodynamic surfaces, where we showed a graphene-composite leading edge of an Airbus 350 horizontal rear stabilizer. Airbus, Nanesa and CNR in WP14 Composites have further demonstrated a graphene-based deicing/anti-icing system that is compatible with composite parts and can produce a heating effect of 13 kW/m2. This is an example of multifunctional composites that simultaneously take advantage of several of the superior properties of graphene.
In spearhead project 3, several partners under the leadership of University of Rome Tor Vergata have realized the world's first graphene-enabled solar farm which is currently operational in Crete. The facility, which comprises panels with power conversion efficiency in excess of 15%, is now undergoing long term tests.
Under the leadership of Varta, the fifth spearhead project has produced high energy coin cell batteries that exceed the state-of-the-art by 35% in terms of capacity (measured in milliampere hours) and 25% in terms of energy density (measured in milliwatt hours). The batteries have been successfully produced in an industrial production facility and are expected to be released to consumers when the market conditions are right.
By now the Graphene Flagship has resulted in more than 3,500 publications that have been cited more than 111,000 times, showing the remarkable academic output of the flagship. Academic output is, however, only a means to an end: our end goals are technological and societal impacts which take longer to materialize. Also in that respect, we are performing well as is evident from the fact that thus far dozens of products have been launched and 14 new companies have been spun off by flagship partners. The size of the core project has stabilized to about 160 partners, but we see substantial growth in the number of Associated Members (today 94). Most of the Associated Members are industrial, which further strengthens the impact of the flagship project.
Graphene Flagship logo