Cel
Cetaceans are apex predators with significant top-down roles in the marine ecosystem. The impact of these roles must be quantified by measuring energetics in the wild, which has proven difficult in cryptic, highly mobile animals. Current techniques to estimate energy use in free-swimming dolphins overestimate measured values by >200% or integrate energy expenditure over time scales too long to detect responses to specific events or conditions. Through RATE, I will make the first reliable estimates of energy expenditure in managed and free-swimming cetaceans by applying novel techniques from human medicine to extract information from respiratory sounds. RATE will (I) calibrate respiratory flow rates from breath sounds recorded in bottlenose dolphins, (II) apply this calibration to tag deployments on free-swimming, wild dolphins to derive reliable estimates of airflow and energy use, and (III) assess changes in respiratory condition in response to specific events or behaviours. RATE’s objectives require simultaneous respiratory measurements and acoustic recordings of each breath: a custom-built pneumotach placed over the blowhole of bottlenose dolphins will record respiratory flow rates and gases, while state-of-the-art acoustic tags (DTAGs) placed near the animal’s blowhole with suction cups concurrently record the sound of exhalation and inhalation. In accomplishing RATE’s Objectives, I will provide a quantitative and mechanistic framework to define the cost of existence of cetaceans in their natural habitats – a major breakthrough in marine mammal physiology that is directly relevant to the European Commission (EC)’s Marine Strategy Framework Directive. The novel methods I will develop for RATE will overcome existing limitations of measuring field metabolic rates in free-swimming animals, and will increase the resolution of field metabolic rate from days to seconds to revolutionize how we measure energy turnover of marine mammals in the wild.
Dziedzina nauki
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.
Program(-y)
System finansowania
MSCA-IF-EF-ST - Standard EFKoordynator
8000 Aarhus C
Dania