Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Super-resolution visualisation and manipulation of metaphase chromosomes

Cel

CHROMAVISION aims to develop a pioneering chromosome imaging and manipulation platform that will fuel the next decades of structural chromosome research. Chromosomal abnormalities are characteristic of many disorders such as cancer, impaired fertility due to maternal aging, and neurological disorders such as fragile X syndrome. If humanity is to fully understand the wide range of diseases that are associated to errors in cell division, we must be able to further 'zoom in' on healthy and diseased chromosomes in all their complexity. The CHROMAVISION platform will allow molecular biologists to automatically isolate individual chromosomes from small tissue or cell samples and have these delivered to a super-resolution microscope. Chromosome isolation and delivery is achieved by an opto-fluidic chip that is able to trap, visualise and lyse individual cells and separate metaphase chromosomes from cell lysate. Single chromosomes can be “hand-selected” and brought into focus of the Super-Resolution Correlative Tweezers Fluorescence Microscope (CTFM-SR3D) that is developed in CHROMAVISION. This instrument will for the first time enable 3D, super-resolution, real-time metaphase chromosome observation and manipulation studies under near-physiological conditions. The technique will push the boundaries of what is currently possible in microfluidics and super-resolution microscopy and combine these into a single powerful approach for chromosome studies. Furthermore, the platform will be applied in CHROMAVISION to address key challenges in clinical and fundamental chromosome research, potentially resulting in breakthrough discoveries. Better imaging and understanding of the chromosomal mechanisms will contribute to our knowledge of the etiology of human diseases and aid drug discovery. The platform will also have large clinical value, allowing identification and monitoring of e.g. cancer heterogeneity.

Zaproszenie do składania wniosków

H2020-FETOPEN-2014-2015

Zobacz inne projekty w ramach tego zaproszenia

Szczegółowe działanie

H2020-FETOPEN-2014-2015-RIA

Koordynator

STICHTING VU
Wkład UE netto
€ 1 054 003,75
Adres
DE BOELELAAN 1105
1081 HV Amsterdam
Niderlandy

Zobacz na mapie

Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity
€ 1 054 003,75

Uczestnicy (4)