Periodic Reporting for period 2 - EUCALL (European Cluster of Advanced Laser Light Sources)
Okres sprawozdawczy: 2017-04-01 do 2018-09-30
Within EUCALL, accelerator- and laser-based RIs cooperated for the first time on common technical, scientific, and strategic issues, with the goal to make the future operation of these facilities more efficient, and therefore more sustainable. EUCALL developed solutions to technology and operation needs common to these RIs. Examples of technology developments within EUCALL include new standardized sample holders, new sensors and detectors for X-ray beams, new computer software to fully simulate experiments at the various light sources, and new schemes for ultrafast data transfer for experiments at the RIs. EUCALL developed methods and processes and enabled an exchange of know-how between the facilities, which together will enable the RIs, and also the wider light source communities, to better exploit the great research and innovation potential that these RIs provide. Through its results, EUCALL further harmonized the landscape of both classes of photon science RIs in Europe and beyond.
A new software package, SIMEX, was created to simulate various types of experiments using different X-ray light sources. The simulations track the X-rays on their way from the photon source to the sample and further to the X-ray detector and data. Scientists from EUCALL’s facilities integrated individual programs that simulate different steps of the experiment chain and connected them with new interface software to build a platform that researchers can use. SIMEX is publicly available for anyone to access.
Modern X-ray experiments generate large amounts of data on ultrashort timescales. Most computing systems cannot keep up with the high data rates and new solutions are needed. EUCALL’s scientists identified what their various scientific applications have in common, in terms of data rates and formats. This led to definition of best practices for high data rate analysis. EUCALL applied these practices to develop a library of efficient algorithms for data acquisition and online processing at its RIs.
Each X-ray source has its own kind of sample holder for different experiments. EUCALL designed a standardized sample holder for experiments requiring fast and precise sample exchange. This allows users of different photon science RIs to freely exchange samples. Users can prepare their samples on this sample holder and ship them to any of EUCALL’s facilities. EUCALL’s system has an “intelligent” sample scanner which uses a microscope to automatically detect where the interesting regions are. EUCALL’s system then positions the sample into the X-ray beam for the experiment. Prototypes of hardware and software to run this new system were built and tested, and have been installed at several RIs.
Each of EUCALL’s RIs generates intense, ultrashort and partially coherent X-ray pulses with properties often changing from pulse to pulse. For scientific applications it is paramount to measure these properties without altering the pulses significantly. In EUCALL the performance of various specific developments was investigated and the techniques were applied at other EUCALL RIs. Four methods were developed: a residual gas-based X-ray intensity monitor, two different techniques to measure the time delay between laser and x-ray pulses, and a wavefront sensor, which measures the “shape” of an X-ray pulse. Prototypes of each of these new systems were tested by EUCALL’s scientists.
Dissemination of EUCALL’s results was achieved using project dissemination material, press releases, social media, publications, and at scientific conferences and other events.