Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Zawartość zarchiwizowana w dniu 2024-06-18

Ultra-Scalable and Ultra-Efficient Integrated and Visual Big Data Analytics

Opis projektu


Scalable data analytics

LeanBigData aims at addressing three open challenges in big data analytics: 1) The cost, in terms of resources, of scaling big data analytics for streaming and static data sources; 2) The lack of integration of existing big data management technologies and their high response time; 3) The insufficient end-user support leading to extremely lengthy big data analysis cycles. LeanBigData will address these challenges by:•Architecting and developing three resource-efficient Big Data management systems typically involved in Big Data processing: a novel transactional NoSQL key-value data store, a distributed complex event processing (CEP) system, and a distributed SQL query engine. We will achieve at least one order of magnitude in efficiency by removing overheads at all levels of the big-data analytics stack and we will take into account technology trends in multicore technologies and non-volatile memories. •Providing an integrated big data platform with these three main technologies used for big data, NoSQL, SQL, and Streaming/CEP that will improve response time for unified analytics over multiple sources and large amounts of data avoiding the inefficiencies and delays introduced by existing extract-transfer-load approaches. To achieve this we will use fine-grain intra-query and intra-operator parallelism that will lead to sub-second response times.•Supporting an end-to-end big data analytics solution removing the four main sources of delays in data analysis cycles by using: 1) automated discovery of anomalies and root cause analysis; 2) incremental visualization of long analytical queries; 3) drag-and-drop declarative composition of visualizations; and 4) efficient manipulation of visualizations through hand gestures over 3D/holographic views.Finally LeanBigData will demonstrate these results in a cluster with 1,000 cores in four real industrial use cases with real data, paving the way for deployment in the context of realistic business processes.

Dziedzina nauki

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.

Zaproszenie do składania wniosków

FP7-ICT-2013-11
Zobacz inne projekty w ramach tego zaproszenia

Koordynator

UNIVERSIDAD POLITECNICA DE MADRID
Wkład UE
€ 484 360,00
Adres
CALLE RAMIRO DE MAEZTU 7 EDIFICIO RECTORADO
28040 Madrid
Hiszpania

Zobacz na mapie

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity
Brak danych

Uczestnicy (11)