Cel
In spite of considerable work in artificial intelligence, machine learning, and pattern recognition in the past 50 years, we have no machine capable of adapting to the physical and social environment with the flexibility, robustness and versatility of a 6-months old human child. Instead of trying to simulate directly the adult s intelligence, EXPLORERS proposes to focus on the developmental principles that give rise to intelligence in infants by re-implementing them in machines. Framed in the developmental/epigenetic robotics research agenda, and grounded in research in developmental psychology, its main target is to build robotic machines capable of autonomously learning and re-using a variety of skills and know-how that were not specified at design time, and with initially limited knowledge of the body and of the environment in which it will operate. This implies several fundamental issues: How can a robot discover its body and its relationships with the physical and social environment? How can it learn new skills without the intervention of an engineer? What internal motivations shall guide its exploration of vast spaces of skills? Can it learn through natural social interactions with humans? How to represent the learnt skills and how can they be re-used? EXPLORERS attacks directly those questions by proposing a series of fundamental scientific and technological advances, including computational intrinsic motivation systems for learning basic sensorimotor skills reused for grounded acquisition of the meaning of new words. This project not only addresses fundamental scientific questions, but also relates to important societal issues: personal home robots are bound to become part of everyday life in the 21st century, in particular as helpful social companions in an aging society. EXPLORERS objectives converge to the challenges implied by this vision: robots will have to be able to adapt and learn new skills in the unknown homes of users who are not engineers.
Dziedzina nauki
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.
- natural sciencescomputer and information sciencesartificial intelligencepattern recognition
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringrobotics
- natural sciencescomputer and information sciencesartificial intelligencemachine learning
- social sciencespsychologydevelopmental psychology
Zaproszenie do składania wniosków
ERC-2009-StG
Zobacz inne projekty w ramach tego zaproszenia
System finansowania
ERC-SG - ERC Starting GrantInstytucja przyjmująca
78153 Le Chesnay Cedex
Francja