Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

EXPLAINABLE AI PIPELINES FOR BIG COPERNICUS DATA

Opis projektu

Platforma wytłumaczalnej sztucznej inteligencji pomaga w analizie dużych zbiorów danych z programu Copernicus

Finansowany przez UE projekt DeepCube wykorzystuje postępy w dziedzinie sztucznej inteligencji (SI) i sieci semantycznych, aby w pełni wykorzystać potencjał dużych zbiorów danych pozyskiwanych z programu Copernicus. Celem projektu DeepCube jest rozwiązanie problemów o dużym znaczeniu społeczno-środowiskowym oraz poprawa zrozumienia procesów zachodzących na Ziemi, skorelowanych ze zmianą klimatu. Projekt wykorzystuje technologie TIK takie jak Earth System Data Cube, Semantic Cube, platforma Hopsworks oraz najnowocześniejsze narzędzie wizualizacyjne, integrując je w otwartej platformie interoperacyjnej, która może zostać wdrożona w infrastrukturach chmurowych i wysokowydajnych systemach obliczeniowych. Zespół DeepCube opracuje architektury uczenia głębokiego, które obejmują niekonwencjonalne dane, zastosuje modelowanie hybrydowe dla modeli sztucznej inteligencji opartych na danych, które respektują prawa fizyczne, oraz – dzięki wytłumaczalnej sztucznej inteligencji i wprowadzeniu przyczynowości – otworzy czarną skrzynkę uczenia głębokiego.

Cel

DeepCube leverages advances in the fields of AI and semantic web to unlock the potential of big Copernicus data. DeepCube is impact driven; our objective is to address new and ambitious problems that imply high environmental and societal impact, enhance our understanding of Earth’s processes, correlated with Climate Change, and feasibly generate high business value.
To achieve this we bring mature and new ICT technologies, such as the Earth System Data Cube, the Semantic Cube, the Hopsworks platform for distributed DL, and a state-of-the-art visualisation tool tailored for linked Copernicus data, and integrate them to deliver an open and interoperable platform that can be deployed in several cloud infrastructures and HPC, including DIAS environments.
We then use these tools to develop novel DL pipelines to extract value from big Copernicus data. We implement a shift in the use of AI pipelines. DeepCube 1) develops novel DL architectures that extend to non-conventional data and problems settings, such as interferometric SAR, social network data, and industrial data, 2) introduces a novel hybrid modeling paradigm for data-driven AI models that respect physical laws, and 3) opens-up the DL black box through Explainable AI and Causality. We showcase these in five Use Cases (UC), two business, two on earth system sciences, and one for humanitarian aid. These are:
UC1: Forecasting localized extreme drought and heat impacts in Africa,
UC2: Climate induced migration in Africa,
UC3: Fire hazard short-term forecasting in the Mediterranean,
UC4a: Automatic volcanic deformation detection and alerting and UC4b: Deformation trend change detection on PSI time-series for critical infrastructure monitoring,
UC5: Copernicus services for sustainable and environmentally-friendly tourism.

Zaproszenie do składania wniosków

H2020-SPACE-2018-2020

Zobacz inne projekty w ramach tego zaproszenia

Szczegółowe działanie

H2020-SPACE-2020

Koordynator

ETHNIKO ASTEROSKOPEIO ATHINON
Wkład UE netto
€ 627 750,00
Adres
LOFOS NYMFON
11810 Athina
Grecja

Zobacz na mapie

Region
Αττική Aττική Κεντρικός Τομέας Αθηνών
Rodzaj działalności
Research Organisations
Linki
Koszt całkowity
€ 627 750,00

Uczestnicy (8)