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Figure 1. Showing the generic DISCO pipeline: Entry points of the target molecules and how fundamental science and
innovation can add value to the supply chain are illustrated via the positioning of the WP activities.

(A) Literature survey on Iridaceae bioactive molecules
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(B) Literature survey on Solanaceae bioactive molecules
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Figure 2. Demonstrating how the database was formatted using the first 9 Iridaceae species (out of 124 species
found) (A) and first 14 Solanaceae species (out of 117) (B). The data base lists the species, the associated bioactivity
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found, active molecule if known, references reporting this information and source of seeds if known. There is also a
numerical scale to indicate how reliable the evidence for the bioactivity was (0=not available, 1=anecdotal, 2 =cell
free, 3=cell based, 4=animal testing, 5=epidemiology, 6=human tested). The full database contains a total of 241
species with 714 supporting references.
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Figure 3. A schematic of germplasm screening and target optimisation against state of the art.
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Figure 4. (A) The saffron apocarotenoid pathway. Crocus sativus flower at anthesis. The yellow arrowheads point at
the three stigmas. (B) Proposed saffron apocarotenoid biosynthesis pathway. Zeaxanthin is cleaved at the 7,8 and 7,8’
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positions by a CCD activity. The C20 cleavage product, crocetin dialdehyde, is converted to crocetin by an aldehyde
to crocins by at least two UDPG-glucosyltransferases. The C10 product, 3-OH-B-cyclocitral, is
by an UDPG-glucosyltransferase, and then to safranal. (C) The expression patterns of the

dehydrogenase, and then
converted to picrocrocin

putative dioxygenases deduced from RNA-Seq datasets.
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Figure 5. The figure illustrates CCD2 expressed in E. coli cleaves zeaxanthin to yield crocetin dialdehyde. (A) E. coli cells
accumulating lycopene, B-carotene, or zeaxanthin were transformed with the empty pThio vector, C-, or the same
vector expressing CCD2 or ZCD, induced for 16 h at 20 °C with arabinose and pelleted. Note the discoloration of
zeaxanthin in CsCCD2-expressing cells. (B) LC-HRMS analysis of zeaxanthin cleavage products. Zeaxanthin-
expressing CsCCD2 were induced for 16 h at 20 °C with arabinose, extracted with acetone,
and the extracts were run on a LC-HRMS system alongside authentic standards. The accurate masses of zeaxanthin, 3-
OH- B-apo-8'-carotenal, and crocetin dialdehyde were extracted. Only crocetin dialdehyde is detectable and has an

accumulating E. coli cells
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accurate mass and a chromatographic mobility identical to that of the authentic standard.
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Figure 6. Transfer of the synthetic astaxanthin operon from N. tabacum to N. glauca by horizontal genome transfer.
(A) Reciprocal grafting of the transplastomic astaxanthin-producing N. tabacum line (Nt-AXT-1) with a kanamycin-
resistant N. glauca line (Ng-kan). (B) Detection of horizontal genome transfer on regeneration medium containing
kanamycin and spectinomycin. The control explants (stem sections and leaf pieces) from the two graft partners are in
the two left frames, the excised graft sites are in the right frame. Growing orange calli (indicated by arrows) indicate
horizontal genome transfer events. Note that the Nt-AXT-1 control explants lost their orange color due to their
sensitivity to kanamycin, a potent inhibitor of chloroplast translation. (C) Growth of regenerated transplastomic
astaxanthin-synthesizing N. glauca plants (right) in comparison to a plant of the Ng-kan line used for grafting (left). (D)
An astaxanthin-synthesizing N. glauca plant after transfer to the greenhouse. (E) Confirmation of horizontal genome
transfer by RFLP analysis. RFLP analysis of 7 independent horizontal genome transfer lines of N. glauca (Ng-AXT lines)
detects the same 7.3 kb fragment that is present in the transplastomic N. tabacum line used for grafting (Nt-AXT-1).
Note that line Ng-AXT-8 is heteroplasmic and still contains copies of the resident N. glauca plastid genome, as
evidenced by presence of the hybridization signal at 2.15 kb. (F) Flower phenotypes of an N. glauca wild-type plant
(upper flower) and an Ng-AXT line (lower flower). Expression of the astaxanthin operon converts the yellow pigment
of wild-type flowers (mainly lutein) into red astaxanthin (figure from Lu et al., 2017).
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Figure 7. Comparison of the relative fold changes in leaf solanesol content relative to the mock inoculated WT N.
benthamiana plants, in plants (A) transiently expressing single MEP pathway genes and (B) co-expression of MEP
pathway gene and SDS. Values shown are presented at 3 time points and are the mean of three biological replicates.
Statistical analysis was performed using Student’s t-test and the significances are indicated (c) P <0.05, (d) P <0.01, (d)
P <0.001.

In addition to pathway engineering, regulators of plastid parameters/core metabolism (DE-ETIOLATED (DET-1) and
GOLDEN LIKE (GLK-1)) showed increased solanesol content. This could be due to improved supply of precursors from
primary to secondary metabolism, CO, fixation and sequestration properties. In tomato natural variation (alleles) were
determined as high accumulator of (up to 4 fold) levels of solanesol in vegetative tissues. Natural variation in potato
was also carried out to identify potentially alleles having a positive positive effect on solanesol content.
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Figure 8. Representative scheme of the ketocarotenoid pathway introduced in plant. Enzyme names are as follow:
CRTR-B1, plant carotene beta-hydroxylase 1; CRTW, bacterial carotene ketolase and CRTZ, bacterial carotene
hydroxylase. The purple and blue shadings depict the position of the newly added functional group (hydroxyl or
ketone, respectively).
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Figure 9. Chromatographic profiles of ZWRI tomato carotenoids and phoenicoxanthin chirality. The chromatographic

carotenoids profile was obtained by UPLC and recorded at 470 nm. The insert shows that the chiral carbon of the
ZWRI phoenicoxanthin has an S configuration.
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Figure 10. lllustrating the traditional extraction of carotenoids from the tomato based material.
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Figure 11. Workflow illustrating the minimal bioprocessing of the tomato derived material into effective aquaculture
feed.
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Figure 12. Initial down-stream processing and formulations followed by prototype products created with green
chemistry
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Figure 13. Simplified process flowsheet proposed for biogas production using tomato plant residues.
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Figure 14. Polytunnel cultivation of DISCO prototypes; minimal resources input was used.
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Table 1. Carotenoid content in ZWRI tomato line and azygous controls grown in greenhouse or polytunnel
conditions. Carotenoid levels are represented as pg/g dry weight and in bold figures as percentages. Three
representative fruits of N plants were used. The fruits were respectively pooled and three determinations were made.
The mean data are shown as = SD. Nq signifies that a compound has been detected but it is under the level of
quantification. Polytunnel condition are defined by a polytunnel structure, without extra heating and lighting.
Computed p-values for the comparison of ZWRI tomatoes grown in the greenhouse and the polytunnel are tabulated.
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Figure 15. ZWRI tomatoes color trout fillets. Photographs of the trout fed with the basic, commercial, control tomato,
ZWRI tomato and ZWRI extract feeds, taken at the end of the fresh and brackish water trials (50 and 80 days,

respectively).
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Figure 16. Chromatographic profiles of carotenoids in the feed and fillet corresponding to the commercial and ZWRI
tomato treatments. 1, astaxanthin; 1#, unknown ketocarotenoid-1; 2, phoenicoxanthin; 3, canthaxanthin; 4, 3'-OH-
echinenone; 5, 3-OH-echinenone; 6, echinenone; 7, phoenicoxanthin-C14:0; 8, adonixanthin-C14:1; 9,
phoenicoxanthin-C16:0; 10, adonixanthin-C16:1; 11, -carotene.

Efficient metabolic pathway engineering in transgenic E
tobacco and tomato plastids with synthetic
multigene operons
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Fig. 17 B Novel carotenoid cleavage dioxygenase catalyzes the
first dedicated step in saffron crocin biosynthesis

Fig. 17 A
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of ketocarotenoids and its evaluation in
aquaculture feed

Fig. 17 C
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Figure 17. Examples of publications in high impact peer reviewed journals.
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Figure 18. Thank you card for the practical activities provided for primary school children.

Horizontal Transfer of a Synthetic
Metabolic Pathway between Plant Species
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Figure 19. An example recent scientific advances incorporated into the scientific curriculum in Europe.
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Non-novel food (FSA)

A natural powder from IBR proprietary, non-GMO tomato rich in phytoene and phytofiuene

Figure 20. DISCO derived innovation product development by P12-IBR and P3-HUII.
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Figure 21: DISCO interconnectivity of programme activities, outcomes and delivery of impact.
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